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Abstract The optimal stochastic scheduling of hydrothermal systems requires the analytical represen-
tation of uncertainties in the inflows to the hydro plants. Multistage stochastic optimization methods
such as SDDP use a multivariate periodic autoregressive (PAR) inflow model in this task. Because
the inflow model parameters are estimated from historical data, they have a natural estimation error.
However, this error in the parameter values is not taken into account in the stochastic optimization,
i.e. the model assumes that they are population values.

In this paper, we show that the consequence of ignoring parameter value uncertainty is an “op-
timistic” operation policy. We also show that, with the increased penetration of wind energy, whose
historical records are typically much shorter than inflow records, this optimistic bias tends to get more
severe. We also propose two approaches to eliminate this problem: (i) carry out a parameter estimation
that takes into account its effect on expected operation cost, using a minimax regret or a CVaR-based
criterion; (ii) incorporate multiple streamflow models in the SDDP recursion.
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1 SDDP FORMULATION

1.1 Notation

Indices

t = 1, . . . , T time stages (typically weeks or months)

τ = 1, . . . , intra-stage time blocks (e.g. peak, medium and low demand or 168 hours in a

week)

s = 1, . . . , S scenarios for each stage t produced by the stochastic models (typically inflows

and renewable generation; also loads, equipment availability and fuel costs)

l = 1, . . . , L set of scenarios for stage t+ 1 conditioned to scenario s in stage t

i = 1, . . . , I storage devices (typically hydro plants; also fuel storage, batteries, emission limits

and some types of contracts)

m ∈Mi set of hydro plants immediately upstream of plant i
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j = 1, . . . , J dispatchable devices (typically, thermal plants; also, some controllable renewables

and price-responsive demand)

n = 1, . . . , N non-dispatchable devices (typically, wind, solar and biomass)

p = 1, . . . ,P number of hyperplanes (Benders cuts) in the future cost function

Decision variables for the operation problem in stage t, scenario s

vt+1,i stored volume of hydro i by the end of stage t

ut,i turbined volume of hydro i stage t

st,i spilled volume of hydro i in stage t

et,τ,i energy produced by hydro i in block τ , stage t

gt,τ,j energy produced by thermal plant j in block τ , stage t

αlt+1 present value of expected future cost from t+ 1 to T conditioned to scenario l in

t+ 1

Note: for notational simplicity, we will not include the transmission network model in the formulations.

Known values for the operation problem in stage t, scenario s

âst,i lateral inflow to hydro i in stage t, scenario s (âst set of inflows for all hydro

plants)

v̂st,i stored volume of hydro i in the beginning of stage t, scenario s (v̂st set of stored

volumes for all hydro plants)

vi maximum storage of hydro i

ui maximum turbined outflow of hydro i

ρi production coefficient (kWh/m3) of hydro i

gj maximum generation of thermal plant j

cj variable operating cost of thermal plant j

r̂st,τ,n energy produced by renewable plant n in stage t, block τ , scenario s

d̂t,τ demand of block τ , stage t

Multipliers

πht,i multiplier of the storage balance equation of hydro i (see problem formulation)

πat,i multiplier of the conditioned inflow equation of hydro i (see problem formulation)

pth Benders cut coefficients

ϕ̂pht+1,i coefficient of hydro plant i’s storage, vt+1,i

ϕ̂pat+1,i coefficient of hydro plant i’s inflow, alt+1,i

ϕ̂p0t+1 constant term

Stochastic streamflow model coefficients
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µ̂t,i mean of the lateral inflow to hydro i in stage t.

σ̂t,i standard deviation of the lateral inflow to hydro i in stage t.

ρ̂t,i serial correlation of the lateral inflow to hydro i in stage t.

1.2 Problem Formulation

Objective function (SDDP recursion)

αt (v̂st , â
s
t ) = Min

∑
j

cj
∑
τ

gt,τ,j +
1

L

∑
l

αlt+1 (1a)

Storage balance for each stage

vt+1,i = v̂st,i + âst,i − (ut,i+st,i) +
∑
m∈Mi

(ut,m+st,m) ← πht,i (1b)

Note: for notational simplicity, we will not represent real-life features of the storage balance equa-
tions such as evaporation, filtration, water diversion for irrigation and city supply, transposition and
others.

Storage and turbined outflow limits

vt+1,i ≤ vi (1c)

ut,i ≤ ui (1d)

Generation and demand balance for each block

et,i = ρiut,i (1e)

∑
τ

et,τ,i = et,i (1f)

et,τ,i ≤ ei (1g)

gt,τ,j ≤ gj (1h)

∑
i

et,τ,i +
∑
j

gt,τ,j = d̂t,τ −
∑
n

r̂st,τ,n (1i)

Conditioned inflow scenarios for t+1

For simplicity of presentation, we show a multivariate AR(1) model (in practice, SDDP uses a
multivariate periodic autoregressive (PAR)) model with up to six past time stages):(

alt+1,i − µ̂t+1,i

)
σ̂t+1,i

= ρ̂t,i ×
(
âst,i − µ̂t,i

)
σ̂t,i

+
√

1− ρ̂2t,i × ξ̂
l
t,i ← πat,i (1j)
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where the parameters {µ̂t,i, σ̂t,i, ρ̂t,i} are respectively the mean, standard deviation and serial correla-
tion of the lateral inflow to hydro i in stage t. Spatial dependence is represented through a correlation
matrix in the sampling the innovation values ξ̂lt,i for all hydro plants.

Note: For clarity of presentation, the stochastic streamflow models are shown explicitly. In the
actual SDDP implementation, they are represented implicitly.

Future cost functions

As it is well known, the FCFs in SDDP are represented by a set of hyperplanes

αlt+1 ≥
∑
i

ϕ̂pht+1,i × vt+1,i +
∑
i

ϕ̂pat+1,i × a
l
t+1,i + ϕ̂0p

0t+1 ∀p = 1, . . . , P; l = 1, . . . , L (1k)

1.3 Backward recursion step

After the one-stage dispatch problem 1.2 is solved, we can generate a Benders cut to improve the future
cost function approximation of the previous stage. Note that Benders cuts are now generated in both
the forward and backward steps.

Assuming that the FCF for the previous stage already has P hyperplanes, the Benders cut will
correspond to the (P + 1)

th
FCF constraint:

αlt ≥
∑
i

ϕ̂P+1
ht,i × vt,i +

∑
i

ϕ̂P+1
at,i × a

l
t,i + ϕ̂P+1

0t (2a)

The Benders cut coefficients ϕ̂P+1
ht,i , ϕ̂P+1

at,i and ϕ̂P+1
0t are calculated from a linear expansion of the

optimal solution α∗t of the one-stage dispatch problem 2.2

αt (vt, at) ≈ α∗t +
∑
i

∂αt
∂vt,i

×
(
vt,i − v̂st,i

)
+
∑
i

∂αt
∂at,i

×
(
at,i − âst,i

)
(2b)

The coefficient ϕ̂P+1
ht,i corresponds to ∂αt

∂vt,i
, which is the simplex multiplier πht,i. In turn, ϕ̂P+1

at,i

corresponds to ∂αt

∂at,i
, calculated as: πht,i +

(
ρ̂t,i
σ̂t,i

)
× πat,i. Finally, the constant term is obtained by

adding all the constants of the linear expansion:

ϕ̂P+1
0t = α∗t −

∑
i

ϕ̂P+1
ht,i v̂

s
t,i −

∑
i

ϕ̂P+1
at,i â

s
t,i (2c)

1.4 Forward simulation step

Upper bound calculation

In stage t, scenario s of the forward simulation step, we calculate the immediate operation cost
associated to optimal solution (indicated by the superscript “*”).

zst =
∑
j

cj
∑
τ

g∗t,τ,j (3a)

As in the traditional SDDP formulation, the upper bound is calculated as:



Title Suppressed Due to Excessive Length 5

z =
1

S

∑
t

∑
s

zst (3b)

Inflow scenario for stage t + 1

We also calculate in the forward simulation step the inflow scenario vector for the next stage t+ 1:{
âst+1,i, i = 1, . . . , I

}
. This is done by sampling from the expression for the conditioned inflows of

section 1.2.5:

(
alt+1,i − µ̂t+1,i

)
σ̂t+1,i

= ρ̂t,i ×
(
âst,i − µ̂t,i

)
σ̂t,i

+
√

1− ρ̂2t,i × ξ
l
t,i ∀l = 1, . . . , L; ∀i = 1, . . . , I (3c)

Basically, ŝ is randomly sampled from the set {1, . . . , L}, and the inflows
{
âst+1,i, i = 1, . . . , I

}
are

calculated for the corresponding innovation vector
{
ξ̂ŝt,i, i = 1, . . . , I

}
. Note that the entire innovation

vector(i = 1, . . . I) has to be used in order to preserve the spatial correlation.(
ast+1,i − µ̂t+1,i

)
σ̂t+1,i

= ρ̂t,i ×
(
âst,i − µ̂t,i

)
σ̂t,i

+
√

1− ρ̂2t,i × ξ̂
ŝ
t,i ∀i = 1, . . . , I (3d)

At this point we have two possibilities, either we pre calculate at,i for all t before even starting the
sddp recursion or we repeat the above described procedure in each iteration so that we have higher
probability of generating new cuts.

2 Uncertainty on the inflow model parameters

For convenience of presentation, we reproduce below the AR(1) stochastic model of equation (3d).(
alt+1,i − µ̂w(t+1),i

)
σ̂w(t+1),i

= ρ̂w(t),i ×
(
âst,i − µ̂w(t),i

)
σ̂w(t),i

+
√

1− ρ̂2w(t),i × ξ̂
l
t,i ∀i = 1, . . . , I (4)

As it is well known, the values of the mean, standard deviation and serial correlation parameters{
µ̂w(t), σ̂w(t), ρ̂w(t)

}
are estimated from the historical records:

µ̂w,i =
1

YH

∑
t∈Tw

âHt,i w = 1, . . . , 52 (or 12) (5a)

σ̂w,i =

√
1

YH − 1

∑
t∈Tw

(
âHt,i − µ̂w,i

)2
(5b)

ρ̂w,i =
1

YH−1
∑
t∈Tw

(
âHt,i − µ̂w,i

) (
âHt+1,i − µ̂w(t+1),i

)
σ̂w,iσ̂w(t+1),i

(5c)

where:

– w is a scalar variable that indexes the weeks (or months)
– w(t) is a function that indicates the week (or month) associated to stage tt ∈ Tw set of time stages

associated to week (or month) w
– YH is the number of years in the historical record
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It is also well known that there is an uncertainty around these estimated values, which depends
on the number of years YH of the historical record. For example, the estimator of the mean µ̂w,i is a

Normal random variable with a standard deviation of
σ̂wt,i√
YH
.

This means that, when we simulate the system operation with a set of S inflow scenarios produced
by the AR(1) model above with fixed values for {µ̂t, σ̂t, ρ̂t}, we are ignoring the uncertainty on the
parameter values. This uncertainty may be relevant when the historical records are fairly short, which
is the case of many modern renewable sources such as wind.

2.1 Modeling inflow scenarios with parameter uncertainty

Initially, we show how to produce a set of inflow scenarios {ãst , s = 1, . . . S; t = 1, . . . , T} which
incorporate parameter uncertainty.

1. Estimate the ARH model parameters {µ̂t, σ̂t, ρ̂t} from the historical record.
2. Repeat for s = 1, . . . , S

Apply the ARH model (with parameters {µ̂t, σ̂t, ρ̂t}) to generate a pseudo-historical inflow record
Hs,that is, an inflow scenario with the same number of years N as the historical record.
Estimate the ARs model parameters {µ̃st , σ̃st , ρ̃st} from Hs.

3. Repeat for s = 1, . . . , S

Apply the ARs model with parameters {µ̃st , σ̃st , ρ̃st} to generate one scenario of length T ,
{ãst , t = 1, . . . , T}

Figure (1) illustrates the scenario generation scheme.

Fig. 1 Scenario Generation scheme

2.2 Operating cost impact of ignoring parameter uncertainty

The effect on expected operating costs of ignoring parameter uncertainty can be assessed as follows:

1. Run a SDDP stochastic policy/probabilistic simulation without parameter uncertainty, i.e. where
both the inflow scenarios {âst , s = 1, . . . S; t = 1, . . . , T} and the conditioned inflows{
alt+1, l = 1, . . . , L

}
are produced with the parameters {µ̂t, σ̂t, ρ̂t} estimated from the historical

sample:
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2. Let z be the expected operation cost in the final probabilistic simulation of step (a). As discussed,
z will be correct only if the estimates of parameter values are equal (or very close) to their “true”
(population) values.

3. Run another probabilistic simulation using the set of FCFs from the run of step (a), but with inflow
scenarios {ãst , s = 1, . . . S; t = 1, . . . , T} produced by the two-phase procedure above1. Let z̃ be
the expected operation cost of this simulation. From the previous discussions, we know that z̃ ≥ z
(for the confidence interval).

The difference (z̃−z)
z is a measure of the cost of ignoring parameter uncertainty in the stochastic

optimization. If this cost is significant, we need to represent parameter uncertainty in the SDDP
stochastic optimization scheme. This topic is discussed next.

2.3 Calculation of inflow model clusters

The first step is to group the S different sets of parameters (remember that S can be as high as 1,200
scenarios) into a smaller number M of clusters, for example, M = 5. This is done as follows:

1. Repeat for each pseudo-historical record Hs, s = 1, . . . , S
Calculate the total annual energy inflow esy for each year y = 1, . . . , YH as:

esy =
∑
t∈Ty

∑
i

ρia
s
t,i (6)

where:
– t ∈ Ty is the set of stages (months or weeks) of year y.
– ρi is the sum of production coefficients of hydro i plus all plants downstream of i.

Calculate the mean and standard deviation of the yearly annual inflows:

µ̂sY =
1

YH

∑
y

esy (7)

σ̂sY =

√
1

YH − 1

∑
y

(
esy − µ̂sY

)2
(8)

Define a scalar severity index χs based on a severe, but plausible, drought (e.g. 2.0 standard
deviations from the mean):

χs = µ̂sY − 2.0σ̂sY (9)

2. Use a clustering method over the set {χs, s = 1, . . . , S} to create M sets of parameter values
{µ̃mt , σ̃mt , ρ̃mt } , m = 1, . . . , M. Each of these sets will be associated with a different stochastic
streamflow model.

3. Estimate the probability pm of each inflow model as pm = Sm

S , m = 1, . . . , M, where Sm is the
number of scenarios in cluster m.

Next, we will show how to represent different stochastic inflow models in the SDDP policy calcu-
lation.

1 Note that the conditioned inflows for the next stage,
{
alt+1 , l = 1, . . . , L

}
, used in the operating problem in each

stage and scenario are still calculated with the parameters {µ̂t, σ̂t, ρ̂t} estimated from the historical sample.
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2.4 Selection of inflow model based on risk-adjusted operation costs

1. Repeat for each inflow model m = 1, . . . , M
Run a SDDP stochastic policy calculation assuming that an “oracle” indicated that inflow model
m is correct, i.e. where both the inflow scenarios {ãmst , s = 1, . . . S; t = 1, . . . , T} and the con-
ditioned inflows

{
amlt+1 , l = 1, . . . , L

}
are produced with the parameters {µ̃mt , σ̃mt , ρ̃mt } of inflow

model m.
2. Repeat for each inflow model n = 1, . . . , M

Run a probabilistic simulation using the set of FCFs from the SDDP run of step (1), but using
a different set of inflow scenarios {ãnst , s = 1, . . . S; t = 1, . . . , T} produced by inflow model
n. Let z̃mn be the expected operation cost of this simulation. From the previous discussions, we
know that z̃ ≥ z (for the confidence interval).

The above procedure results in the M×M matrix shown below. Each element z̃mn in the matrix
is the expected operation cost when we calculate the stochastic policy assuming that the inflow model
is m, but the actual model is n. The values {pm} in the first row the probabilities of each inflow model.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 · · · pm · · · pM
z̃11 . . . z̃1m . . . z̃1M
...

. . .
...

z̃m1 z̃mm z̃mM

...
. . .

...
z̃M1 . . . z̃Mm . . . z̃MM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The objective is now to select the “best” inflow model based on the policy calculation / simulation

results. The decision criteria include:

a) choose the model that minimizes the expected operation cost over all possible models:

m∗ = argmin
m

∑
n

pnz̃mn (10)

b) minimax regret:

m∗ = argmin
m

max
n
{z̃mn − z̃mm} (11)

c) convex combination of (a) and (b):

m∗ =

[
λ
∑
n

pnz̃mn + (1− λ) {z̃mn − z̃mm}

]
(12)

d) convex combination of (a) and CVaR of expected operating costs:

m∗ =

[
λ
∑
n

pnz̃mn + (1− λ)CVaRq {z̃mn}

]
(13)

The aforementioned procedure assumes that we can only have one inflow model in the SDDP policy
calculation. We show next how to represent several inflow models simultaneously in the SDDP
recursion.
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2.5 Case studies

The proposed approach was applied to the Brazilian Power System, which has an installed capacity
of 125 GW, 160 hydro (85 with storage), 140 thermal plants (gas, coal, oil and), 8 GW wind, 5 GW
biomass and 1 GW solar.

From the parameters of the historical record (Parent Level), 200 historical records with 85 years
size (1931-2014) were generated (Child Level) and the corresponding sample parameters were clustered
in 5 clusters {µ̂mt , σ̂mi , ρ̂mt }. Figure (2.5) depicts the standard deviation and average of each Child Se-
quence and for each cluster.

Fig. 2 Average and standard deviation of parent level, child level and centroids

For each cluster we have generated sequences for the study horizon (Grandchild Level). In order
to calculate the best inflow model, we calculated an operating policy for each cluster and held a final
simulation for each Grandchild sequence m. Figure (2.5) shows the matrix with the difference to the
optimal policy, in percentage.

The simulations carried out with the “taylor made” policy are the best ones, as expected. We have
calculated the different criteria discussed before. Figure (2.5) depicts the best policy for each criterion.

We can observe that the “best” inflow model based on the policy calculation/simulation depends
on the decision criteria.
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m*#=#Expected#Value#

m*#=#minimax#regret

m*#=#CVaR

Fig. 3 Operating cost matrix (% optimal value)

P1 P2 P3 P4 P5
S1 0% 2% 6% 2% 18%
S2 0% 0% 5% 0% 16%
S3 6% 8% 0% 2% 20%
S4 4% 6% 2% 0% 23%
S5 18% 16% 18% 21% 0%Si

m
ul
at
io
ns

Policies

Fig. 4 Operating cost matrix (% optimal value)

3 SDDP policy calculation with different inflow models

In this section, we describe our current research on the representation of different inflow models in the
SDDP recursion.

3.1 Basic formulation

The SDDP formulation below calculates the optimal stochastic policy (minimization of expected op-
eration costs) when there are M alternative inflow models with probabilities {pm,m = 1, . . . , M}.

αt (v̂st , ã
s
t ) = Min

∑
j

cj
∑
τ

gt,τ,j +
∑
m

pm

[
1

L

∑
l

αmlt+1

]
(14a)

vt+1,i = v̂st,i + ãst,i − (ut,i+st,i) +
∑
η∈Mi

(ut,η+st,η) ← πht,i (14b)

· · ·

∑
i

et,τ,i +
∑
j

gt,τ,j = d̂t,τ −
∑
n

r̂st,τ,n (14c)
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(
amlt+1,i − µ̂mw(t+1),i

)
σ̂mw(t+1),i

= ρ̂mw(t),i ×

(
ãst,i − µ̂mw(t),i

)
σ̂mw(t+1),i

+

√
1−

[
ρ̂mw(t),i

]2
× ξ̂lt,i ∀i, l,m← πmlat,i (14d)

αmlt+1 ≥
∑
i

ϕ̂pht+1,i × vt+1,i +
∑
i

ϕ̂pat+1,i × a
ml
t+1,i + ϕ̂p0t+1 ∀p,m,l (14e)

Note that in this formulation there areM×L piecewise linear future cost functions
{
αmlt+1

}
. There-

fore, the computational effort is higher than in the standard SDDP recursion.

Benders cut calculation

The storage coefficients
{
ϕ̂P+1
ht,i

}
are calculated in the same way as in the standard SDDP formu-

lation. The inflow coefficients
{
ϕ̂P+1
at,i

}
are calculated as:

ϕ̂P+1
at,i = πht,i +

∑
m

pm

[(
ρ̂mw(t),i

σ̂mw(t+1),i

)
πmlat,i

]
(14f)

4 Case studies

The proposed approach was applied to a system with a single hydro plant and 3 thermal power plants,
resulting in a power system with 80% hydro predominance. Although simple, this static configuration
captures the essence of hydrothermal scheduling issues and was chosen for didactic reasons. The ther-
mal plants have installed capacity of 80, 110 and 90 MW, and unit variable cost of 80, 30 and 115
R$/MWh, respectively. Table 1 presents the characteristics of the hydro plant.

A dummy load shedding unit was considered with a variable cost of 1000 $/MWh. The discount
rate used was 8% per year, measured in inflation-free currency. The monthly energy load is 496 GWh.
The monthly load was considered constant along the study period and flat during each month, i.e.,
seasonality and peak demand modeling was not considered.

Hydro

Capacity (MW) 1147
Max. turbining outflow (m3/s) 1479
Mean production coefficient (MW/m3/s) 0.783
Min. storage (hm3) 20922
Max. storage (hm3) 22950

Table 1: Hydro Plant’s Characteristics

From the parameters of the historical record (Parent Level), 4096 historical records with 40 years
size were generated (Child Level) and the corresponding sample parameters were clustered in 5 clus-
ters {µ̂mt , σ̂mi , ρ̂mt }. Because the hydrothermal simulation has 12 stages, the clustering technique was
applied to the average inflow of the period. Fig. 1 presents µ and σ of the average streamflows from
March to February (study period) of the parent sequence level, child sequence level and the cluster
centroids. The weights p of each cluster are, in order, 23.1%, 20.7%, 27.4%, 18.5% and 10.3%.

First, the operating policy Ω0was calculated for the sample parameters {µ̂t, σ̂t, ρ̂t}, which cor-
responds to the current hydrothermal dispatch methodology. Then, this policy was simulated for the
sequences generated with the parameters of each cluster (Grandchild Sequence Level). These sequences



12 Bernardo Bezerra

would be possible candidates for the population values.

Fig. 5 Average and standard deviation of parent level, child level and centroids

Figure (4) compares the present value of the total expected operating cost (thermal cost plus energy
deficit cost). We observe that, if the population values are close to cluster 5, the real operating costs
are 41% higher than the initial expectation.

Fig. 6 Present value of the total expected operating cost – without parameter uncertainty

The average cost resulting from the weighting of the operating cost of each cluster in Figure 2,
weighted by their respective weight pm, is the expected cost of the hydrothermal dispatch simulated
with parameter uncertainty, as this simulation represents jointly parameter and streamflow uncertain-
ties. This results in a weighted cost $40.0 million, 5.1% less than the simulation performed with series
generated without parameter uncertainty. However, this does not mean that the policy Ω0calculated
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without parameter uncertainty is optimal for the system. To illustrate this point, the Ωm operational
policies were calculated for each cluster m, in order to identify the one that minimizes the operating
cost of the final simulation with parameter uncertainty. The proposed policy Ω6 , which considers pa-
rameter uncertainty, was also calculated. Figure (4) compares the present value of the expected cost
for each policy, all simulated with uncertainty in the parameters. The Ω4 policy presented operating
costs 30.4% higher. The policy strategy with parameter uncertainty reduced 7.7% the operating costs.

Fig. 7 Present value of the total expected operating cost – with parameter uncertainty

In order to analyze the optimality of proposed operating policy in this paper, we calculated an
operating policy for each cluster and held a final simulation for each Grandchild sequence m. Figure
(4) shows the matrix with the difference to the optimal policy, in percentage.

Cluster	  1 Cluster	  2 Cluster	  3 Cluster	  4 Cluster	  5
	  Ω0	  Parent	  Level 0.5% 0.2% 0.6% 0.5% 1.5%

	  Ω1	  Cluster	  1 0.0% 0.2% 2.3% 1.2% 2.1%
	  Ω2	  Cluster	  2 0.6% 0.0% 2.2% 1.2% 2.1%
	  Ω3	  Cluster	  3 1.1% 0.8% 0.0% 0.5% 0.8%
	  Ω4	  Cluster	  4 34.5% 29.1% 50.8% 0.0% 81.4%
	  Ω5	  Cluster	  5 0.9% 1.1% 0.4% 0.4% 0.0%
	  Ω6	  Parameter	  Uncertainty 0.6% 0.4% 0.0% 0.2% 0.5%

Final	  Simulation

Po
lic
y

Fig. 8 Operating cost matrix (k$)

Analyzing the table columns, we observed that the policy with parameter uncertainty Ω6 is between
the second and the fourth best of the seven tested policies. Analyzing the table rows, we note that
the maximum regret (greater deviation from the optimum) of the policy Ω6 was 0.6%, while for other
policies this value is greater than 1.1% reaching 81.4 % in Ω4 . Therefore, proposed policy Ω6 is the one
that minimizes the expected value of the operating cost taking into account parameter uncertainty and
that minimizes the maximum regret, considering as candidates for the population values the parameters
of the 5 clusters.
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5 Improved SDDP policy calculation with different inflow models

The previous SDDP formulation uses a single probability value pm for each inflow model m =
1, . . . , M. It is possible to refine the policy calculation by using the probability of each model
conditioned to the current inflow value ãst,i. This is analogous to using the transition probabilities of a
Markov chain instead of the steady-state marginal distribution probabilities.

Calculation of the conditioned model probabilities

The first step is to transform the S inflow vectors
{
ãst,i
}

of stage t into S scalar values correspond-
ing to the hydro energy inflow {ẽst} (analogous to the procedure used to cluster stochastic models).
Next, we group the energy inflows into K clusters

{
Ckt , k = 1, . . . , K

}
. For example, K = 3 could

correspond to high, medium and low energy inflows. Finally, for each cluster Ckt , we estimate the con-

ditioned probability of each model m, pktm, as the ratio
Sk
tm

Sk
t

, where Skt is the number of scenarios in

cluster Ckt , and Sktm is the number of scenarios produced by model m in that cluster.

The second step is to estimate the transition probabilities
{
pkνt
}

from each cluster Ckt in stage t

to each of the clusters in stage t + 1,
{
Cνt+1, ν = 1, . . . ,K

}
. This is similar to the procedure used in

the Markov chain formulations of the previous chapter: pkνt is the fraction of scenarios s ∈ Ckt that also
belong to Cνt+1. In summary:

(i) for each cluster Ckt there is an associated vector of model probabilities
{
pktm
}

; and (ii) the
transition probability from cluster k in stage t to cluster ν in stage t+ 1 is pkνt .

SDDP recursion with different inflow models and conditioned probabilities

This means that the energy inflow cluster Cmt will also be a state variable in the SDDP recursion:

αt

(
v̂st , ã

s
t , C

k(s)
t

)
= Min

∑
j

cj
∑
τ

gt,τ,j +
∑
ν

pkνt

[∑
m

pktm

(
1

L

∑
l

αmlνt+1

)]
(15a)

vt+1,i = v̂st,i + âst,i − (ut,i+st,i) +
∑
m∈Mi

(ut,m+st,m) (15b)

· · ·

∑
i

et,τ,i +
∑
j

gt,τ,j = d̂t,τ −
∑
n

r̂st,τ,n (15c)

(
amlt+1,i − µ̂mw(t+1),i

)
σ̂mw(t+1),i

= ρ̂mw(t),i ×

(
ãst,i − µ̂mw(t),i

)
σ̂mw(t+1),i

+

√
1−

[
ρ̂mw(t),i

]2
× ξ̂lt,i ∀i, l,m← πmlat,i (15d)

αmlνt+1 ≥
∑
i

ϕ̂νpht+1,i × vt+1,i +
∑
i

ϕ̂νpat+1,i × a
ml
t+1,i + ϕ̂pν0t+1 ∀p = 1, . . . ,Pν ,m,l (15e)

Benders cut calculation

The storage coefficients
{
ϕ̂P+1
ht,i

}
are calculated in the same way as in the standard SDDP formu-

lation. In turn, the inflow coefficients
{
ϕ̂P+1,k
at,i

}
are calculated as
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ϕ̂P+1,k
at,i =

∑
m

pktm

[(
ρ̂mw(t),i

σ̂mw(t+1),i

)
πmlat,i

]
(16)

6 Conclusion

The impact of the uncertainty of the PAR(p) model parameters was quantified, in the context of
stochastic hydrothermal dispatch, and it was proposed an improvement in the policy calculation in
order to take into account this phenomenon. It was shown that parameter uncertainty has significant
impact on the system’s operating costs and its incorporation in the policy calculation allows a reduc-
tion of 7% in operating costs. The proposed operating policy had the lower expected cost minimized
the maximum regret.

Although by computational limitation the application of the proposed methodology is not feasible
for policy calculation in large systems, such as the Brazilian Power System, the work serves as starting
point for discussions on the improvement of stochastic optimization models for hydrothermal dispatch.
However, this does not prevent final simulations of operation and expansion planning studies to be
carried out considering this uncertainty, in order to diagnose more accurately the situation of supply
security.

Finally, the objective of the paper was to calculate an operating policy which is better than the
policy without considering parameter uncertainty, which is the current approach used in hydro schedul-
ing. The quality of the proposed policy can be improved by modeling the inflows as a Markov Chain,
with transition probabilities between each cluster.


