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Abstract—This work presents a methodology to incorporate
reliability constraints in the optimal power systems expansion
planning problem. Besides LOLP and EPNS, traditionally used
in power systems, this work proposes the use of the risk
measures VaR (Value-at-Risk) and CVaR (Conditional Value-at-
Risk), widely used in financial markets. The explicit consideration
of reliability constraints in the planning problem can be an
extremely hard task and, in order to minimize computational
effort, this work applies the Benders decomposition technique
splitting the expansion planning problem into an investment
problem and two sub-problems to evaluate the system’s operation
cost and the reliability index. The operation sub-problem is
solved by Stochastic Dual Dynamic Programming (SDDP) and the
reliability sub-problem by Monte Carlo simulation. The proposed
methodology is applied to the real problem of optimal expansion
planning of the Bolivian power system.

Index Terms—System expansion planning, Benders decompo-
sition, Power systems, Reliability, Stochastic programming, Risk
measures, Mixed Integer Programming, Monte Carlo, Stochastic
Dual Dynamic Programming,.

I. INTRODUCTION

THE goal of power systems expansion planning (SEP)
is to determine necessary changes in the system due to

load growth, new technologies and policy related constraints.
In this sense, new generators should be constructed with the
goal of satisfying the new system’s needs and the planning
process decisions are associated to the selection of the best
set of equipment (such as generators, transmission lines, trans-
formers, etc.) to accomplish this task. This decision process
gives origin to a complex optimization problem, where the
objective is to plan the future power system minimizing the
investment and operation costs subject to a pre-established set
of constraints. Cases of SEP are generation expansion planning
(GEP) [1], [2] and transmission expansion planning (TEP) [3],
[4] that can be combined and integrated [5], [6] generally
called SEP or GTEP.

This planning process constitutes an extremely complex
problem that cannot be solved without simplifications. De-
pending on the goals of the planner different aspects and de-
tails of power systems can be considered in general SEP. Many
possible constraints are described in [7], some specific aspects
include: carbon capture and storage [8]; unit commitment in
the operation [9]; flexible demand and electric vehicles [10];
aggressive wind power penetration [11]. A common aspect
in most SEP models is the representation of uncertainties,
although each model typically focuses on sources of ran-
domness, like renewable energy and load [12], outages or

contingencies [13], [14]. Frequently used frameworks to deal
with uncertainties in SEP are Stochastic Optimization [15],
[16] and Robust Optimization [12], [17], both of which can
also be combined [18].

Many techniques were proposed to solve the large-scale
problems that arise from SEP modelling. Heuristics like Par-
ticle Swarm Optimization and GRASP were proposed in [8]
and [19]. Many decomposition methods were presented due
to natural scenario-wise and/or stage-wise structure: [20] [21]
and [22] apply progressive hedging, Dantzig Wolfe decompo-
sition was applied in [23] and Benders decomposition, perhaps
the most used one, was applied in [12], [13], [15], [24]–[28].

Reliability is an important aspect of power systems that can
be considered in SEP. The simplest way to taking reliability
into account is adopting a hierarchical approach, in which
the expansion plan is at first elaborated under the economic
focus (first step), in other words, aiming the minimization of
the investment costs plus the cost of load supply (operation
cost). Hereafter, the necessary additional investments to meet a
minimum criterion of security (reliability reinforcements) are
evaluated (second step).

Among the first approaches for the solution of the SEP
with reliability constraints is the work [29] where linear
approximations of a reliability function were obtained from
a non-linear formulation. Afterwards, [30] presented a similar
model, but able to generate Benders cuts from a probabilistic
simulation model. However, this last model was non-convex
which led to convergence problems. Robust optimization was
used to induce expansion plans with better reliability indexes
in [6]. In [15], reliability requirements were modeled by
including a cost of load loss in the objective function.

In general, SEP can be formulated as a minimum total
cost function (investment and operation) subject to the op-
eration and reliability constraints that depend directly upon
the investment decisions. This formulation contains a very
opportune structure for the application of decomposition tech-
niques and this characteristic was first explored by [31].
Thereafter, [32] presented a model for load-peak capacity
expansion considering EPNS constraints, but its application
was restricted to the second step problem, in other words, the
evaluation of additional investments to attend the reliability
requisites. Reliability constraints were also applied in [33],
[34], but the problem was solved by genetic algorithm without
optimality proofs. More recently, [13], [28] considered explicit
constraints on reliability indexes via Monte Carlo simulation
and Benders decomposition with feasibility cuts. [35] consid-
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ered a Loss Of Load Probability (LOLP) constraint, originally
modeled as a Mixed Integer Nonlinear Program (MINLP) and
approximated by a Mixed Integer Linear Program (MIP).

This work proposes an integrated methodology for the so-
lution of the SEP, where the economic and reliability analyses
are carried out on an integrated problem. Therefore, it is
possible to assess the benefit of each project both in terms
of reduction of the operative cost as well as the increase in
the overall system reliability. Additionally, we compare the
obtained results from the proposed integrated approach with
the simplification made by using the hierarchical approach for
the solution of the SEP.

We use the Benders decomposition technique to split the
original problem in investment, operation and reliability mod-
ules. This partition allows each subproblem to be solved by
a specialized algorithm, for instance, the investment master
problem (a mixed integer programming problem) is solved
by Branch-and-Bound (B&B), the operation subproblem by
Stochastic Dual Dynamic Programming (SDDP) [36] and
the reliability subproblem by Monte Carlo simulation (MC).
Instead of focusing on classical measures like LOLP and
EPNS [28] we propose the use of the two risk measures VaRα
and CVaRα, commonly used in the financial area, but also
applied in different contexts in SEP [27], [37], [38].

The main contributions of this paper are: a general descrip-
tion of SEP that can be solved by Benders decomposition;
application of alternative metrics to power system reliability
constraints; description of the reliability constraint as linear
programming deterministic problem equivalent to the MC
version of the constraint evaluation; combination of the SDDP
method as a technique to solve the large-scale convex opera-
tion problem.

The remainder of this work is organized as follows. In the
next section, II, a generic formulation of reliability constrained
system expansion problem is presented. Section III describes
reliability metrics and their corresponding formulations as
optimization problems. In section IV, we describe the decom-
position procedure that combines the plan choice, cost and
reliability evaluation, after that, we present case studied on
section V. Finally, conclusions are drawn in section VI.

II. POWER SYSTEMS EXPANSION PLANNING

The reliability constrained SEP can be formulated as the
following mixed integer programming problem:

Min I(x) +O(x) (1a)
s.t.: R(x) ≤ R̄ (1b)

x ∈ X (1c)

where x is the vector of investment decisions, I(x) the
investment cost, O(x) the operation cost and R(x) the risk
measure functions, R̄ the reliability criteria and X the set of
decisions that meet planning constraints.

A. Economic Planning (EP)

The first step of an hierarchical planning process is a
simplification of problem (1), by disregarding the explicit

representation of the reliability aspects and the risk constraints
(1b), as shown in problem (2).

Min I(x) +O(x) (2a)
s.t.: x ∈ X (2b)

In this sense, the explicit representation of the uncertainty
associated to the state of each generating unit is, in general,
simplified by applying a reduction factor in every power
plants’ capacity corresponding to their average availability
rate. This approximation avoids the representation of all power
system states and the SEP of generation systems. A simplified
formulation of EP is given by:

Min
∑
j∈G

cjxj +
∑
j∈G

djgj + hr (3a)

s.t.:
∑
j∈G

gj + r = D (3b)

gj ≤ g̃jxj j ∈ G (3c)
x ∈ X (3d)

where G is the set generators, cj and dj represent the in-
vestment and variable operation costs of generating unit j, D
represents the total system demand, h is the load shedding
unit cost, r is a variable that represents the load shedding, g̃j
is the available capacity of generator calculated in terms of
average availability as g̃j = (1 − pj) × ḡj , pj is the average
failure rate and ḡj is the installed capacity of j.

The objective function (3a) is the minimization of the total
cost (investment and operation), subject to demand supply in
each time step (3b), limits on generation (3c), and investment
constraints (3d).

The operation problem is usually much more complex
that the illustrative model presented above. As mentioned in
the introductory section, many details might be taken into
consideration such as: demand response, storage equipment
and time coupling, uncertainty, competition, unit commitment,
energy network representation and many others.

Although this model has been frequently used, the use of
a generation capacity based on average availability may not
be enough to capture the true exposure/risk of load shedding
events, as illustrated in Figure 1. Even if the system can meet
the load on average, it might exist one or more states of failure
in which the remaining capacity is no sufficient to supply the
demand (hatched regions). Hereof it might be necessary to
model the system in probabilistic terms to better represent
the reliability aspects and this requires modeling the operating
state of all generators and, consequently, the total capacity of
the system as a random variable (r.v.).

III. RELIABILITY ANALYSIS OF POWER SYSTEMS

A power system is basically composed of elements such as
generators, transmission lines, transformers and load and each
element may be in a state among a set of possible states. For
example, the operating state of a generating unit can be either
(a) 0 if the equipment is not working or (b) 1 if it is working.
Other elements, such as demand and combined cycle plants,
may require a multi-state representation.
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Fig. 1. Random behavior of total system capacity

A state of a power system with J generators is represented
by the random vector ξ = (ξ1, ξ2, . . . , ξJ) where ξj is a r.v.
representing the state of the j-th generator. Let S represent the
set of states of the power system, given by the combination
of all possible states of each element and e each state is
denoted by ξs, s ∈ S. For each state of generator j there
is an associated probability of occurrence pj = P (ξj) and,
once the state of each generator for the system state s ∈ S is
given, it is possible to calculate the probability of this system
state as ps = P (ξs).

The total system capacity is denoted by the r.v. Ḡ =∑J
j=1 ξj ḡj and the load shedding is given by the r.v. R =

max(D− Ḡ, 0), which is the insufficient generation capacity.
Since ξ has finite support distribution, each realization of
system state ξs is associated to a total capacity of Ḡs and
a respective load shedding Rs.

The performance of a given investment plan x can be mea-
sured with risk indexes based, in general, on the probability
distribution of the load shedding. Since the objective of the
SEP is to determine which and when generators should be
constructed, the probability distribution of P (R) must also be
a function of the investment decision vector x. Therefore, the
objective of the reliability-constrained SEP becomes to find
the plan that minimizes the investment and operation costs
and present a “controlled” load shedding distribution function
in the sense that its associated reliability index meets some
given pre-established planning criterion.

The next section presents the reliability indexes LOLP and
EPNS, traditionally used in power systems, and then intro-
duces in the context of power system reliability the indexes
VaRα and CVaRα, frequently used in the financial sector.
Moreover, the calculation of these indexes will be formulated
as optimization problems aiming their incorporation into the
SEP.

A. Typical Reliability Indexes

1) LOLP: The most straightforward approach to measure
the risk of failure of supplying the power system load is to
assess the number of insufficient states among all of them. The
LOLP (Loss Of Load Probability) is the probability of load
shedding, as illustrated in Figure 2(a), and is given by

LOLP = P (R > 0) =
∑
s∈Ω

ps (4)

(a) LOLP (b) EPNS

Fig. 2. Typical Reliability Indexes

where Ω = {s ∈ S|rs > 0}.
The calculation of LOLP can be formulated as a (possibly

large) mixed integer linear programming problem, using an
integer variable φs, for each state s to indicate whether it
leads to a load shedding. Then, the LOLP is calculated as
the average of these indicator variables weighted by the state
probability. By explicitly incorporating this formulation into
the problem, the LOLP-constrained EPP can be defined as:

Min
∑
j∈G

cjxj +O(x) (5a)

s.t.:
∑
s∈S

psφs ≤ LOLP (5b)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (5c)

φs ≥ 1

D
rs ∀s ∈ S (5d)

rs ≥ 0 ∀s ∈ S (5e)
φs ∈ {0, 1} ∀s ∈ S (5f)
x ∈ X (5g)

where LOLP ∈ [0, 1] is the accepted level of reliability adopted
as the planning criterion. Constraint (5c) relates the load
shedding to the system’s capability of load supply in each
state and constraint (5d) ensures that the indicator variable φs
will be equal to 1 for the states with load shedding. Note that
constraint (5b) limits the value of LOLP and, consequently,
restricts the set of possible investment plans.

One characteristic of LOLP, which is also the most common
source of criticism, is that the depth of the load shedding
is disregarded since “bad” states are equally labeled with
φs = 1, independent of the amount of load being shed.
This can mislead the SEP to find investment plans with small
probability of failure but exposed to states with high level of
severity.

2) EPNS: The Expected Power Not Supplied is the average
value of the load shedding of all system states, as illustrated
in Figure 2(b). It can be defined as

EPNS = E[R] =
∑
s∈S

psrs (6)

The EPNS can also be formulated as an optimization
problem and explicitly incorporated into the SEP, resulting
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in the EPNS-constrained SEP model (7).

Min
∑
j∈G

cjxj +O(x) (7a)

s.t.:
∑
s∈S

psrs ≤ EPNS (7b)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (7c)

rs ≥ 0 ∀s ∈ S (7d)
x ∈ X (7e)

where EPNS is the pre-established planning criterion to EPNS.
Although the EPNS captures the severity of the load shed-

ding in average terms, this index also considers all the “good”
states (i.e. without load shedding) and, thus, results on a
“diluted” index, not reflecting the real exposure of the system
to states with failure.

B. Risk Measures Used in Financial Area

It would be interesting if the reliability index could capture
both the characteristics of LOLP and EPNS, i.e., both the
number of states with load shedding and the severity of these
states. To accomplish this task we propose the risk measures
used in portfolio optimization problems in financial sector. In
the next sections, the risk measures VaRα and CVaRα will be
presented and introduced in context of reliability analysis for
power systems expansion planning.

1) VaRα: The Value-at-Risk [39] is a risk index that aims to
measure the lowest load shedding associated to a probability
of occurrence α or, similarly, the maximum load shedding
within a specified level of confidence 1 − α, as illustrated in
Figure 3(a). For example, VaR5% answers the question “what
is the maximum possible load shedding considering the 95%
best states”?

As in the case of LOLP and EPNS, it is possible to define
the SEP using R(x) = VaRα(x) as the reliability index. Its
formulation can be explicitly incorporated into the problem
(1), resulting in problem (8).

Min
∑
j∈G

cjxj +O(x) (8a)

s.t.: rs −Dφs ≤ VaR ∀s ∈ S (8b)∑
s∈S

psφs ≤ α (8c)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (8d)

rs ≥ 0 ∀s ∈ S (8e)
φs ∈ {0, 1} ∀s ∈ S (8f)
x ∈ X (8g)

where VaRα is the limit determined by the system planner.
Note that, as in the case of LOLP, an integer variable for
each state is also required, what makes its representation more
difficult.

Rearranging the constraint (8b), we have φs ≥
D−1

(
rs − VaR

)
which indicates that, when the load shedding

(a) VaRα (b) CVaRα

Fig. 3. Financial Risk Measures

rs exceeds the limit VaR the variable φs should assume value
1, characterizing the states in the tail of the probability dis-
tribution function. Even though it incorporates the parameter
α that allows this index to focus on the set of states in the
tail of the distribution, the VaRα is the smallest value in this
set and, therefore, cannot detect the severity of the states with
load shedding greater than VaRα, which is a drawback similar
to the one associated to LOLP.

2) CVaRα: The Conditional Value-at-Risk measures the
expected value of the α worst states, i.e., the average of the
states that comprise the tail of the probability distribution
function of the load shedding and is defined as

CVaRα(R) = E[R : R ≥ VaRα(R)] (9)

The CVaRα index has several interesting properties [40] and
[41] demonstrated that it is possible to formulate the CVaRα
calculation as a linear programming problem independent of
VaRα, which needs integer variables in its formulation.

As defined for the measures presented above, the SEP with
CVaRα constraint is shown in (10).

Min
∑
j∈GC

cjxj +O(x) (10a)

s.t.: b+ α−1
∑
s∈S

psys ≤ CVaR ∀s ∈ S (10b)

rs ≥ D −
∑
j∈G

ξsj ḡjxj ∀s ∈ S (10c)

rs ≥ 0 ∀s ∈ S (10d)
ys ≥ rs − b ∀s ∈ S (10e)
ys ≥ 0 ∀s ∈ S (10f)
x ∈ X (10g)

where CVaR is a limit pre-established by the planner, b is the
variable that represents the implicitly calculated VaRα while
ys is the amount of load shedding that exceeds b, calculated
by equation (10e). Therefore, the CVaRα can be calculated
as the sum of b plus the expected value of ys conditioned to
the states that exceed the VaRα, as shown in left-hand side of
equation (10b).

IV. CONSIDERING RISK CONSTRAINTS IN
DECOMPOSITION SCHEMES

As noted in previous sections, the reliability-constrained
expansion planning problem is a large scale mixed-integer op-
timization problem. The incorporation of reliability constraints
into the SEP requires the representation of a (possibly large)
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set of additional variables and constraints for every state of the
system and the number of states grows combinatorially with
the number of generating units of the system.

The main objective of the design of mathematical decom-
position techniques is to solve very complex or large problems
through the repeated solution of a series of easier or smaller
problems. From model (1) it is possible to note that the
SEP with reliability constraints has a block structure and the
problems are coupled by the investment decision vector x. This
structure is opportune for the application of such techniques.

In this work, we use the Benders decomposition technique
[42] to split the original problem into three sub-problems,
intuitively reproducing the expansion planning process, which
may consist of the following steps:
• First, the investment subproblem (master) is solved, aim-

ing for a new trial investment plan xµ, based on in-
formation obtained until iteration µ: an approximation
of the total cost function (investment plus approximate
operation cost) and the approximation of the reliability
“feasible region” (constraints representing the set of plans
that meet the reliability criterion);

• Given the proposed plan, xµ, the operation sub-problem
(slave) is solved and we check if the approximation of the
cost function represented in the investment sub-problem
is appropriate. If this function has not the adequate
accuracy, a sensitivity analysis is conducted in order to
build a new Benders optimality cut and improve the
approximation of the cost function in the master problem;

• For the same proposed plan xµ, the reliability sub-
problem (another slave) is solved to verify if the proposed
solution is feasible with respect to the selected reliability
index. If the solution is not feasible, a sensitivity analysis
in this problem is carried out and a new Benders feasi-
bility cut is obtained, improving the representation of the
feasible region in the master problem.

In brief, at each iteration a trial solution is obtained from
the master problem and sent to both slave sub-problems. Each
sub-problem evaluates the decision xµ in terms of its cost
and reliability and also return Benders cuts for improving the
representation of approximated operation cost and reliability
index in the master problem. This procedure is repeated
iteratively until a feasible solution with minimal total cost is
found.

A. Investment Subproblem

The investment sub-problem can be formulated as the
following mixed integer linear programming problem:

Min
∑
j∈G

cjxj + α (11a)

s.t.: α ≥ O(xi) +
∑
j∈G

∂O(xi)

∂xij
(xj − xij) i ∈ A (11b)

R(xi) +
∑
j∈G

∂R(xi)

∂xij
(xj − xij) ≤ R̄ i ∈ R (11c)

x ∈ X (11d)

where A and R are the sets of iterations where a cut has been
added and xi is the trial solution vector found at iteration i.
Constraints (11b) are called optimality cuts and are a first order
approximation of the operation cost function O(x). Similarly,
constraints (11c) are called feasibility cuts and are also a
linear approximation of the feasibility region associated to the
reliability index represented by the function R(x).

B. Operation sub-problem

Given a trial investment decision xµ, the operation sub-
problem can be formulated as

O(xµ) = Min
∑
j∈G

djgj + hr (12a)

s.t.:
∑
j∈G

gj + r = D (12b)

gj ≤ ḡjxjµ πḡj j ∈ G (12c)

where πḡj corresponds to the dual variable of the maximum
generation constraint of generator j.

From linear programming theory, it is known that πḡj is the
derivative of the objective function with respect to the right-
hand side of constraints (12c). Applying the chain rule, we
have

∂O(xµ)

∂xjµ
=

∂O(xµ)

∂(ḡjxjµ)
× ∂(ḡjxj

µ)

∂xjµ
= πḡj × ḡj (13)

which is the derivative of the operation cost with respect to
the investment decision xµ, used to construct the optimality
Benders cuts (11b).

In this section we considered the most simple single-
stage deterministic representation of the system’s operation.
However, the construction of the Benders cut easily generalize
to the multistage stochastic setting with all operative details.
[25], [26]

C. Reliability sub-problem

Given a trial investment decision xµ, it is possible to
calculate the value of the risk measure associated to this plan,
as well as the derivative of the reliability function R(xµ) with
respect to the investment decision, needed for the construction
of the Benders cuts (11c) that approximate the feasible region
for the adopted reliability criterion in the master problem.

The feasibility Benders cuts consist in cutting planes that
are tangent to the original feasibility region. Because of this
reason, one of the requirements for the Benders decomposition
method to be successfully applied is that the generated cuts
cannot eliminate feasible solutions and this fact cannot be
guaranteed if the sub-problem is non-convex.

This same decomposition scheme cannot be implemented
for SEP with LOLP and VaRα constraints because they require
the use of integer variables, characterizing a non-convex
problem. It is still possible to use alternative and less efficient
decompositions that remove infeasible integer solutions one
by one. Therefore, this work considered only the SEP with
EPNS or CVaRα constraints as reliability criterion1.

1Actually, it can be shown that is possible to approximate LOLP, EPNS
and VaRα criteria by just changing the parameters of CVaRα planning model
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1) EPNS Criterion: This sub-problem considers R(x) =
EPNS(x) and the solution can be obtained without the explicit
representation of the load shedding variable rs because, given
xµ, it is possible to calculate the EPNS as

EPNS(xµ) =
∑
s∈Ω

ps ×

D −∑
j∈G

ξjsḡjxj
µ

 (14)

Deriving the equation (14) with respect to the investment
variable xjµ, we have

∂EPNS(xµ)

∂xjµ
= −

∑
s∈Ω

psξjsḡj ∀j ∈ G (15)

which consists in the coefficients of the feasibility Benders
cuts (11c). For each investment plan, the EPNS(xµ) and
the derivative with respect to each xj

µ can be obtained
solving the states obtained from the Monte Carlo simulation
independently. Then, a single cut is calculated by properly
aggregating the results.

2) CVaRα Criterion: The value for CVaRα(xµ) if given by
the solution of following linear programming sub-problem:

Min b+ α−1
∑
s∈S

psys (16a)

s.t.: rs ≥ D −
∑
j∈G

ξsj ḡjxj
µ vs ∀s ∈ S (16b)

rs ≥ 0 ∀s ∈ S (16c)
ys ≥ rs − b ws ∀s ∈ S (16d)
ys ≥ 0 ∀s ∈ S (16e)

where the decision variables b, rs and ys are non-negative
and vs and ws are the dual variables of constraints (16d) and
(16b), respectively. The same solution process used for EPNS
is applied for CVaRα to obtain the feasibility cut.

V. CASE STUDY

The case study consists of the expansion planning of the
Bolivian (BO) generation system for a 7-years horizon. The
system is composed by 28 existing generating hydro plants
and 25 thermal plants with a total installed capacity of about
850MW (in the first year). In addition, 30 thermal projects
are available as alternatives of investment for the expansion
plan. Note that the maximum number of plants that may be
operating in the system is 83 and, thus, the maximum number
of states in the reliability sub-problem is 283 (approximately
1025 states).

Initially, we perform a comparative analysis for the expan-
sion plans obtained with a hierarchical against an integrated
methodology. Additionally, a comparison between the results
obtained for the EPNS-constrained SEP and the CVaRα-
constrained SEP is carried out.

We adopted a reliability limit for the EPNS equals to 1%
of the demand for each month over the horizon of study. The
reliability sub-problem is solved by Monte Carlo simulation
and it was considered that the convergence is reached when
the coefficient of variation for the EPNS estimator is lower
than 5% [43].

Fig. 4. Resulting EPNS for plan obtained with EP

TABLE I
HIERARCHIC X INTEGRATED PLANNING: ADDITIONAL CAPACITY [MW]

Methodology Y1 Y2 Y3 Y4 Y5 Y6 Y7
EP 0 0 65.8 44.1 285.6 44.1 44.1

HP-EPNS 0 44.1 65.8 44.1 285.6 44.1 44.1
IP-EPNS 0 44.1 44.1 44.1 285.6 44.1 44.1
IP-CVaR 0 44.1 44.1 44.1 285.6 44.1 0

The operation problem is solved by the SDDP algorithm in
order to find the optimal dispatch under uncertainty, typically
on inflow, demand, fuel costs, etc. All real-world details
considered by the Bolivian ISO are represented.

A. Hierarchical Planning with EPNS criterion (HP-EPNS)

The hierarchical planning approach consists of obtaining
an initial investment plan (first step) considering only the
economic aspects, i.e., we aim to find the investment vector
that minimizes the investment and operating costs (EP), as
presented in section II-A. Table I shows the additional capacity
added in each year of the planning horizon and table II its
respective total cost. It can be seen in Figure 4 that the
resulting EPNS is not feasible according to the reliability
criterion pre-established.

The second step of HP-EPNS is accomplished by consider-
ing the investment vector obtained in the first stage and solving
the problem again to obtain reinforcements due reliability
requirements. Observe in table I that it was necessary to invest
in additional 44.1MW in Year 2 (year that occurs the first
violation of EPNS) to ensure feasibility for the reliability
criterion. The associated total cost for this investment plan
is also shown in table II.

B. Integrated Planning with EPNS criterion (IP-EPNS)

In the integrated planning methodology both operation and
reliability sub-problems are solved for each trial decision of
the investment problem. Since the economic solution is not
fixed when solving the reliability sub-problem as in the HP-
EPNS, it is possible to consider in an integrated manner both
the economic benefits and the contribution for the attendance
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TABLE II
HIERARCHICAL X INTEGRATED PLANNING: COSTS

Methodology Investment Operation Total # of violated
Cost Cost Cost months

EP 98.42 M$ 146.66 M$ 245.08 M$ 22
HP-EPNS 117.80 M$ 145.02 M$ 262.82 M$ 0
IP-EPNS 100.06 M$ 152.17 M$ 252.23 M$ 0
IP-CVaR 98.05 M$ 153.66 M$ 251.71 M$ 0

Fig. 5. Resulting EPNS for plan obtained with IP-CVaR

of the reliability criterion and then seek for the global optimal
solution.

Table I shows that, in comparison with HP-EPNS, it is
possible to invest in 44.1MW in Year 3 instead of 65.8MW and
still get a reliability feasible plan. Note that compared to the
methodology HP-EPNS, the IP-EPNS methodology obtains a
lower cost investment plan but with higher operation cost. This
fact illustrates that there is a benefit to invest in a generator
with lower construction cost and higher operating cost because
the reliability criterion could be met and total cost is lower,
as shown in table II.

C. Integrated Planning with CVaRα criterion (IP-CVaR)

In order to compare the risk measures EPNS and CVaRα,
the CVaR5% was calculated for the optimal investment plan
obtained from the IP-EPNS and its maximum value (approx-
imately 10% of total load) was used as the CVaR5% limit for
the expansion planning.

It is possible to observe the final costs obtained with this
plan in table II and the additional capacity in table I. The
difference from the IP-EPNS is that the IP-CVaR methodology
did not consider necessary to invest in 44.1MW in the last year,
obtaining an investment plan with lower cost. Furthermore,
observing the EPNS for the plan in Figure 5, note that, as the
criterion of IP-CVaR methodology are related to the average
of worst 5% states and not the average of all states (EPNS),
it was possible to find a more economic investment plan at
a cost of EPNS exceeding 1% of the load in the last year
(but, as expected, the plan meets the CVaR5% ≤ 10% of load
criterion).

VI. CONCLUSIONS

This work presented a methodology to incorporate reli-
ability constraints in the optimal power systems expansion
planning. Through a real case example, it is shown that
the simple application of an economic planning criterion is
not enough to guarantee that the reliability criterion will be
satisfied. It is also showed that the application of a hierarchical
two-step procedure to solve the expansion planning problem
with reliability criterion does not lead to the least cost solution.

It was shown that the integrated reliability constrained ex-
pansion planning problem can be modeled as a large scale MIP.
In particular, we presented the MIP formulation for multiple
reliability indexes. Benders decomposition can be used to
exploit the problem structures and decouple the problem in
a investment problem solved by standard MIP techniques; an
operation problem solved SDDP; and a reliability problem
solved by Monte Carlo simulation.

The advantage of using the integrated approach is to identify
projects that contribute both in economic terms and in terms of
improving overall system reliability, which might not possible
by using the hierarchical procedure.

In addition to the traditional reliability measures commonly
used in electrical systems, LOLP and EPNS, this work also
illustrated how to incorporate the risk measures VaRα and
CVaRα, widely used in the financial area, into the power
system expansion planning. It was showed that the use of
the CVaRα criterion allows the control of the depth of the
probability distribution function of the system load shedding.
This index can be a powerful tool of interest for system
planners once it allows them to shape the expansion plan
considering the prevention of disastrous events to the desired
level of reliability by stimulating the diversification of the
power plants “portfolio”.

Moreover, this tool can be used to test and create policies
for system expansion and to assess the individual contribution
of each project in both economical and reliability aspects.

ACKNOWLEDGMENT

The authors would like to acknowledge Nora Campodónico
and Silvio Binato from PSR and Marcia Fampa from
COPPE/UFRJ for their valuable contributions and constant
support.

REFERENCES

[1] J. Zhu and M.-y. Chow, “A review of emerging techniques on generation
expansion planning,” IEEE Transactions on Power Systems, vol. 12,
no. 4, pp. 1722–1728, 1997.

[2] V. Oree, S. Z. S. Hassen, and P. J. Fleming, “Generation expansion
planning optimisation with renewable energy integration: A review,”
Renewable and Sustainable Energy Reviews, vol. 69, pp. 790–803, 2017.

[3] S. Lumbreras and A. Ramos, “The new challenges to transmission
expansion planning. survey of recent practice and literature review,”
Electric Power Systems Research, vol. 134, pp. 19–29, 2016.

[4] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Comprehen-
sive review of generation and transmission expansion planning,” IET
Generation, Transmission & Distribution, vol. 7, no. 9, pp. 955–964,
2013.

[5] D. Pozo, E. E. Sauma, and J. Contreras, “A three-level static milp model
for generation and transmission expansion planning,” IEEE Transactions
on Power Systems, vol. 28, no. 1, pp. 202–210, 2013.



8

[6] A. Moreira, D. Pozo, A. Street, and E. Sauma, “Reliable renewable
generation and transmission expansion planning: Co-optimizing system’s
resources for meeting renewable targets,” IEEE Transactions on Power
Systems, vol. 32, no. 4, pp. 3246–3257, 2017.

[7] J. D. Jenkins and N. A. Sepulveda, “Enhanced decision support for
a changing electricity landscape: The genx configurable electricity
resource capacity expansion model,” 2017.

[8] H. Saboori and R. Hemmati, “Considering carbon capture and storage
in electricity generation expansion planning,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 4, pp. 1371–1378, 2016.

[9] B. Hua, R. Baldick, and J. Wang, “Representing operational flexibility
in generation expansion planning through convex relaxation of unit
commitment,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp.
2272–2281, 2018.

[10] P. J. Ramírez, D. Papadaskalopoulos, and G. Strbac, “Co-optimization
of generation expansion planning and electric vehicles flexibility,” IEEE
Transactions on Smart Grid, vol. 7, no. 3, pp. 1609–1619, 2016.

[11] Y. Zhan, Q. P. Zheng, J. Wang, and P. Pinson, “Generation expansion
planning with large amounts of wind power via decision-dependent
stochastic programming,” IEEE Transactions on Power Systems, vol. 32,
no. 4, pp. 3015–3026, 2017.

[12] R. Jabr, “Robust transmission network expansion planning with un-
certain renewable generation and loads,” IEEE Transactions on Power
Systems, vol. 28, no. 4, pp. 4558–4567, 2013.

[13] J. H. Roh, M. Shahidehpour, and L. Wu, “Market-based generation and
transmission planning with uncertainties,” IEEE Transactions on Power
Systems, vol. 24, no. 3, pp. 1587–1598, 2009.

[14] A. Moreira, G. Strbac, R. Moreno, A. Street, and I. Konstantelos, “A
five-level milp model for flexible transmission network planning under
uncertainty: A min–max regret approach,” IEEE Transactions on Power
Systems, vol. 33, no. 1, pp. 486–501, 2018.

[15] P. Jirutitijaroen and C. Singh, “Reliability constrained multi-area ad-
equacy planning using stochastic programming with sample-average
approximations,” IEEE Transactions on Power Systems, vol. 23, no. 2,
pp. 504–513, 2008.

[16] J. Á. López, K. Ponnambalam, and V. H. Quintana, “Generation and
transmission expansion under risk using stochastic programming,” IEEE
Transactions on Power Systems, vol. 22, no. 3, pp. 1369–1378, 2007.

[17] D. Mejia-Giraldo and J. McCalley, “Adjustable decisions for reducing
the price of robustness of capacity expansion planning,” IEEE Transac-
tions on Power Systems, vol. 29, no. 4, pp. 1573–1582, 2014.

[18] L. Baringo and A. Baringo, “A stochastic adaptive robust optimization
approach for the generation and transmission expansion planning,” IEEE
Transactions on Power Systems, vol. 33, no. 1, pp. 792–802, 2018.

[19] S. Binato, G. C. De Oliveira, and J. L. De Araújo, “A greedy randomized
adaptive search procedure for transmission expansion planning,” IEEE
Transactions on Power Systems, vol. 16, no. 2, pp. 247–253, 2001.

[20] Y. Liu, R. Sioshansi, and A. J. Conejo, “Multistage stochastic investment
planning with multiscale representation of uncertainties and decisions,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 781–791, 2018.

[21] F. D. Munoz and J.-P. Watson, “A scalable solution framework for
stochastic transmission and generation planning problems,” Computa-
tional Management Science, vol. 12, no. 4, pp. 491–518, 2015.

[22] Y. H. Wu, “A stochastic mathematical program with complementary con-
straints for market-wide power generation and transmission expansion
planning,” 2014.

[23] K. J. Singh, A. B. Philpott, and R. K. Wood, “Dantzig-wolfe decom-
position for solving multistage stochastic capacity-planning problems,”
Operations Research, vol. 57, no. 5, pp. 1271–1286, 2009.

[24] S. Binato, M. V. F. Pereira, and S. Granville, “A new benders decompo-
sition approach to solve power transmission network design problems,”
IEEE Transactions on Power Systems, vol. 16, no. 2, pp. 235–240, 2001.

[25] B. Gorenstin, N. Campodonico, J. Costa, and M. Pereira, “Power system
expansion planning under uncertainty,” IEEE Transactions on Power
Systems, vol. 8, no. 1, pp. 129–136, 1993.

[26] N. Campodónico, S. Binato, R. Kelman, M. Pereira, M. Tinoco, F. Mon-
toya, M. Zhang, and F. Mayaki, “Expansion planning of generation and
interconnections under uncertainty,” in 3rd Balkans Power Conference,
2003.

[27] L. Baringo and A. J. Conejo, “Risk-constrained multi-stage wind power
investment,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp.
401–411, 2013.

[28] S. Dehghan, N. Amjady, and A. J. Conejo, “Reliability-constrained
robust power system expansion planning,” IEEE Transactions on Power
Systems, vol. 31, no. 3, pp. 2383–2392, 2016.

[29] G. Coté, “Reliability aspects of optimal generation planning models
for power systems,” Ph.D. dissertation, Thesis (Ph. D.)–University of
London, 1979.

[30] J. A. Bloom, “Solving an electricity generating capacity expansion
planning problem by generalized benders decomposition,” Operations
Research, vol. 31, no. 1, pp. 84–100, Jan-Feb 1983.

[31] M. V. F. Pereira, “Application of sensitivity analysis on generation-
transmission system expansion planning,” Ph.D. dissertation, Federal
University of Rio de Janeiro - COPPE/UFRJ, 1985.

[32] G. C. Oliveira, “Metodologia de expansão da capacidade de ponta em
sistemas interligados de geração hidrotermoelétrica,” Ph.D. dissertation,
COPPE/UFRJ, 1987.

[33] J. Sirikum and A. Techanitisawad, “Power generation expansion plan-
ning with emission control: a nonlinear model and a ga-based heuristic
approach,” International Journal of Energy Research, vol. 30, no. 2, pp.
81–99, 2006.

[34] J.-B. Park, Y.-M. Park, J.-R. Won, and K. Y. Lee, “An improved genetic
algorithm for generation expansion planning,” IEEE Transactions on
Power Systems, vol. 15, no. 3, pp. 916–922, 2000.

[35] S. A. Rashidaee, T. Amraee, and M. Fotuhi-Firuzabad, “A linear model
for dynamic generation expansion planning considering loss of load
probability,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp.
6924–6934, 2018.

[36] M. V. F. Pereira and L. Pinto, “Multi-stage stochastic optimization
applied to energy planning,” Mathematical Programming, vol. 52, pp.
359–375, 1991.

[37] M. E. P. Maceira, L. Marzano, D. D. J. Penna, A. Diniz, and T. Justino,
“Application of cvar risk aversion approach in the expansion and
operation planning and for setting the spot price in the brazilian
hydrothermal interconnected system,” in Power Systems Computation
Conference (PSCC), 2014. IEEE, 2014, pp. 1–7.

[38] Y. Tohidi, M. R. Hesamzadeh, and F. Regairaz, “Modified benders
decomposition for solving transmission investment game with risk
measure,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp.
1936–1947, 2018.

[39] P. Jorion, Value at Risk. New York, NY [u.a.]: McGraw Hill, 2000.
[40] C. Acerbi and D. Tasche, “Expected shortfall: a natural coherent

alternative to value at risk,” arXiv, May 2001.
[41] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-

at-risk,” Journal of Risk, vol. 2, pp. 21–41, 2000.
[42] J. F. Benders, “Partitioning procedures for solving mixed-variables

programming problems,” Numerische Mathematik, vol. 4, pp. 238–252,
1962, 10.1007/BF01386316. [Online]. Available: http://dx.doi.org/10.
1007/BF01386316

[43] M. V. F. Pereira, M. E. P. Maceira, G. C. Oliveira, and L. M. V. G.
Pinto, “Combining analytical models and monte-carlo techniques in
probabilistic power system analysis,” IEEE Transactions on Power
Systems, vol. 7, no. 1, pp. 265–272, Feb 1992.

http://dx.doi.org/10.1007/BF01386316
http://dx.doi.org/10.1007/BF01386316

	I Introduction
	II Power Systems Expansion Planning
	II-A Economic Planning (EP)

	III Reliability Analysis of Power Systems
	III-A Typical Reliability Indexes
	III-A1 LOLP
	III-A2 EPNS

	III-B Risk Measures Used in Financial Area
	III-B1 VaR
	III-B2 CVaR


	IV Considering Risk Constraints in Decomposition Schemes
	IV-A Investment Subproblem
	IV-B Operation sub-problem
	IV-C Reliability sub-problem
	IV-C1 EPNS Criterion
	IV-C2 CVaR Criterion


	V Case Study
	V-A Hierarchical Planning with EPNS criterion (HP-EPNS)
	V-B Integrated Planning with EPNS criterion (IP-EPNS)
	V-C Integrated Planning with CVaR criterion (IP-CVaR)

	VI Conclusions
	References

