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1. INTRODUCTION

This report presents an overview of the stochastic dual DP scheme and its applications to
hydrothermal scheduling, including extensions for fuel cost uncertainty and revenue
maximization.
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2. MODELING OF SYSTEM COMPONENTS

2.1 Thermal plants

In purely thermal systems, the operating cost of each plant depends basically on its fuel
cost. Therefore, thermal plants are represented by their unit operating cost {cj, j = 1, ... J }
($/MWh) and their generation limits:

gtj ≤ g
_

j for j = 1, ..., J (2.1)

where:
j indexes thermal plants (J number of plants)
gtj energy production of plant j in stage t (MWh)
g
_

j maximum generation capacity of plant j

2.2 Hydro plants

Figure 2.1 shows the schematic diagram of a hydro plant.

h(v)v

forebay

tailwater

Figure 2.1 - Hydro Plant with Reservoir

Plant operation is modeled through the following equations:

2.2.1 Water Balance

Represents the coupling between successive stages, as illustrated in Figure 2.2: the
reservoir storage at the end of stage t (beginning of stage t+1) is equal to initial storage
minus outflow volumes (turbined and spilled) plus inflow volumes (lateral inflow plus
releases from upstream plants):

vt+1(i) = vt(i) - ut(i) - st(i) + at(i) + ∑
m∈U(i)

 [ut(m) + st(m)] for i = 1,..., I (2.2)

where:
i indexes hydro plants (I number of hydro plants)
vt+1(i) stored volume in plant i at the end of stage t (decision variable)
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vt(i) stored volume in plant i at the beginning of stage t (known value)
at(i) lateral streamflow arriving at plant i in stage t (known value)
ut(i) turbined outflow volume in plant i during stage t (decision variable)
st(i) spilled outflow during stage t (decision variable)
m∈U(i) set of plants immediately upstream of plant i

upstream

plant outflow

lateral inflow

 outflow

Figure 2.2 - Reservoir Water Balance

2.2.2 Limits on storage and outflow

vt(i) ≤ v
_
 (i) for i = 1, ..., I (2.3)

ut(i) ≤ u
_
(i) for i = 1, ..., I (2.4)

where v
_
(i) and u

_
(i) are respectively the maximum storage and turbine capacity.

2.2.3 Energy Production

Hydro plants convert the potential energy of stored water into kinetic energy, which is
used to rotate turbines coupled to an electric generator. The power production resulting
from the release of u m3 through the turbines is given by:

gh = ρ(v)×u (2.5)

where gh is the energy generated (MWh) and ρ(v) is the plant production coefficient
(MWh/m3):

ρ(v) = η×φ×γ×h(v) (2.6)

where:
η efficiency of the turbine/generator set
φ specific mass of water (kg/m3)
γ gravity factor (m/s2)
h(v) net head (m) - difference between forebay and tailwater levels - see Figure 2.1
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3. THE HYDROTHERMAL DISPATCH PROBLEM
 

3.1 Problem Characteristics
 
 The objective of hydrothermal scheduling is to determine the sequence of hydro releases
which will minimize the expected thermal operation cost (given by fuel cost plus penalties
for rationing) along the planning horizon. This problem can be represented as a decision
tree, as illustrated in Figure 3.1.
 

 
OK

spillage

rationing

scheduling

use hydro

save hydro

wet

dry

wet

dry

OK

 

 Figure 3.1 - Decision Process for Hydrothermal Systems
 
 As seen in the picture, the operator is faced with the options of using hydro today, and
therefore avoiding complementary thermal costs, or storing the hydro energy for use in the
next period. If hydro energy is used today, and future inflows are high - thus allowing the
recovery of reservoir storage - system operation will result to be efficient.
 However, if a drought occurs, it may be necessary to use more expensive thermal
generation in the future, or even interrupt load supply.
 
 If, on the other hand, storage levels are kept high through a more intensive use of thermal
generation today, and high inflows occur in the future, reservoirs may spill, which is a
waste of energy and, therefore, results in increased operation costs. Finally, if a dry period
occurs, the storage will be used to displace expensive thermal or rationing in the future.
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3.2 Problem Formulation
 
The stochastic hydrothermal scheduling formulation will be illustrated for one hydro plant
and the three-stage inflow tree of Figure 3.1.

p21

p22

p31

p32

p33

p34

a11

a21

a22

a31

a32

a33

a34

Figure 3.1 - Inflow Scenario Tree
where:
ats inflow in stage t, scenario s
pts conditioned probability of inflow scenario {t,s}

The stochastic scheduling problem is formulated as:

Min c1(u11) + p21 [c2(u21) + p31c3(u31) + p32c3(u32)]

+ p22 [c2(u22) + p33c3(u33) + p34c3(u34)]

subject to (3.1)

(a) water balance constraints

v21 = v11 - u11 - s11 + a11

v31 = v21 - u21 - s21 + a21

v41 = v31 - u31 - s31 + a31

v42 = v31 - u32 - s32 + a32

v32 = v21 - u22 - s22 + a22

v43 = v32 - u33 - s33 + a33

v44 = v32 - u34 - s34 + a34

(b) constraints on storage and outflow

vt+1,s ≤ v
_
; uts ≤ u

_
for all stages t; all scenarios s
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where:
uts hydro scheduling decision (turbined outflow) in stage t, scenario s
ct(uts) thermal generation cost required to complement the hydro scheduling decision
vt+1,s reservoir storage at the end of stage t, scenario s
sts spilled outflow in stage t, scenario s

The thermal complement function ct(uts) is implicitly represented as the solution of the
following LP problem:

ct(uts) = Min ∑
j=1

J

 cj gtj

subject to (3.2)

∑
j=1

J

 gtj = dt - ρ uts (3.2a)

gtj ≤ g
_

j for j = 1, ..., J (3.2b)

where:
j indexes thermal plants (J number of plants)
cj unit operating cost of plant j
gtj energy production of plant j
dt load in stage t
 ρ hydro plant production coefficient (assumed to be constant in this example)

Problem (3.1) can in principle be solved by linear programming (LP) algorithms. However,
the actual scheduling problem involves several hydro plants and, in many cases, a planning
horizon of several years. Due to the exponential increase of inflow branches with time, the
resulting stochastic optimization problem quickly becomes computationally infeasible. This
has motivated the development of solution approaches based on a state-space formulation,
described next.
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4. STATE SPACE SOLUTION APPROACH
 

4.1 Immediate and Future Costs
 
 As shown in Figure 4.1, the scheduling problem is decomposed into several one-stage
subproblems, where the objective is to minimize the sum of immediate and future
operating costs
 

 

immediate
operating
cost

future
operating
cost

turbined outflow

 Figure 4.1 - Immediate and Future Costs versus Final Storage
 
The immediate cost function - ICF - corresponds to the thermal complement function ct(ut)
discussed in the previous section. We see in the Figure that, as hydro outflow increases,
less thermal generation is needed, and the immediate cost decreases. In turn, the future
cost function - FCF – reflects the expected thermal generation expenses from stage t+1 to
the end of the planning period. We see that the FCF increases with the turbined outflow, as
less water will be available in the future to displace thermal generation.

4.2 One-Stage Hydrothermal Dispatch

Given the initial storage vt and the future cost function αt+1(vt+1), the one-stage
hydrothermal scheduling problem is formulated as:

zt = Min ct(ut) + αt+1(vt+1)
subject to (4.1)

vt+1 = vt - ut - st + at

vt+1 ≤ v
_

ut ≤ u
_

In contrast with the very large stochastic LP problem (3.1), the one-stage problem (4.1)
can be easily solved by standard LP schemes.
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4.3 Future Cost Function

4.3.1 Enumeration of all future states

The future cost function calculation is naturally the key aspect of the state-space scheme.
In theory, αt+1(vt+1) could be calculated by simulating system operation in the future for
different starting values of initial storage and calculating the operating costs, as illustrated
in Figure 4.2.
 

 1 2 3 4 time

spillage

rationing

replaces
thermal
generation

max. storage

storage

 Figure 4.2 - “Brute Force” FCF Calculation
 
However, this “brute force” approach has the same computational drawbacks as the
explicit stochastic formulation. Therefore, the future cost function in each stage is
calculated through a more efficient stochastic dynamic programming (SDP) recursion:

4.3.1 SDP Recursion

a) for each stage t (typically a week or month) define a set of system states indexed by m
= 1, ..., M, for example, reservoir levels at 100%, 90%, etc. until 0%. Figure 4.3
illustrates the system state definition for a single reservoir. Note that the initial state
(i.e. storage levels at the beginning of the first stage) is assumed to be known.

1 2 T-1 T

system states
(initial storage level)
for stage T

initial
state

M

m

1

Figure 4.3 - Definition of System States
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b) start with the last stage, T, and solve the one-stage hydrothermal dispatch problem
(4.1) assuming that the initial reservoir storage corresponds to the first storage level
selected in step (a) - for example, 100%. Because we are at the last stage, assume that
the future cost function is zero. Also, because of inflow uncertainty, the hydro
scheduling problem is successively solved for K different inflow scenarios, i.e. different
possible values for inflows in that stage. The procedure is illustrated in Figure 4.4.

minimize immediate cost in T
starting from state M

1 2 T-1 T

one-stage operation
subproblem -  inflow scenario 1

one-stage operation
subproblem - inflow scenario 2

one-stage operation
subproblem -  inflow scenario  K

Figure 4.4 - Optimal Strategy Calculation - Last Stage

c) Calculate the expected operation cost associated to storage level 100% as the mean of
the K one-stage subproblem costs. This will be the first point of the expected future
cost function for stage T-1, i.e. αT(vT). Repeat the calculation of expected operation
costs for the remaining states in stage T. Interpolate the costs between calculated
stages, and produce the FCF αT(vT) for stage T-1, as illustrated in Figure 4.5.

1 2 T-1 T cost

FCF for stage T-1

Figure 4.5 - Calculation of the FCF for Stage T-1

d) The process is then repeated for all selected states in stage T-1, T-2 etc. as illustrated in
Figure 4.6. Note that the objective is now to minimize the immediate operation cost in
stage T-1 plus the expected future cost, given by the previously calculated FCF.

1 2 T-1 future cost

minimize immediate cost in T-1
+ expected future cost starting
from state m storage in T

M

m

1

Figure 4.6- Calculation of Operation Costs for Stage T-1 and FCF for stage T-2
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4.3.2 Implementation of the SDP Scheme

initialize the end-of-horizon future cost function αT+1(vT) ← 0
for t = T, T-1, ..., 1

for each storage value vt = v
1
t, ..., v

m
t  , ... , v

M

t

for each inflow scenario at = a
1
t, ..., a

k
t, ..., a

K

t

solve the one-stage problem (4.1) for initial storage v
m
t  and inflow a

k
t:

α
k
t(v

m
t ) = Min ct(ut) + αt+1(vt+1)

subject to (4.2)
vt+1 = v

m
t  - ut - st + a

k
t

vt+1 ≤ v
_

ut ≤ u
_

next

calculate the expected operation cost over all inflow scenarios:

αt(v
m
t ) = ∑

k=1

K

 pk×α
k
t(v

m
t )

next

create a complete future cost function αt(vt) for the previous stage by interpolation on
the discrete values {αt(v

m
t ), m = 1, ..., M}

next

4.4 Representation of Serial Correlation by Markov Chains

Most inflow sequences present serial correlation, i.e. if the inflow in the past month was
“drier” than average, there is a tendency for the following inflows to be drier as well. This
is due to the “capacitor” characteristics of underground aquifers, where the rate of release
depends on the amount of water absorbed in the past. This correlation may be represented
by a Markov chain, where pkl represents the transition probability from inflow a

k
t in stage t

to inflow a
l

t+1 in stage t+1:

t+1→→
t ↓↓

a
1

t+1 ... a
l

t+1 ... a
L

t+1

a
1
t p11 … p1l … p1L

... … … … … …
a

k
t pk1 … pkl … pkL

... … … …
a

K
t

pK1 … pKl … pKL

The future cost function in the SDP scheme now has two state variables: storage at the
beginning of stage t and inflow along the stage. The procedure is implemented as follows:
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initialize the end-of-horizon future cost function αT+1(vT,aT) ← 0
for t = T, T-1, ..., 1

for each storage value vt = v
1
t, ..., v

m
t  , ... , v

M

t

for each inflow scenario at = a
1
t, ..., a

k
t, ..., a

K

t

solve the one-stage problem for initial storage v
m
t  and inflow a

k
t as the

minimization of immediate cost plus the expected value of future costs over
all transitions from a

k
t to {a

l
t+1} in the next stage:

αt(v
m
t ,a

k
t) = Min ct(ut) + ∑

l=1

L

 pkl×αt+1(v
k

t+1,a
l

t+1)

subject to (4.3)
v

k
t+1 = v

m
t  - ut - st + a

k
t

v
k

t+1 ≤ v
_
; ut ≤ u

_

next
next
create a complete future cost function αt(vt,at) for the previous stage by interpolation
over the values {αt(v

m
t ,a

k
t), m = 1, ..., M; k = 1, ..., K}

next

v
k

t+1

v
m
t

a
k
t

a
L

t+1

a
1

a
l

t+1

at+1

vt+1

at

vt

a
k
t

Figure 4.7 – SDP with at as a state variable
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4.5 Alternative Representation of Serial Correlation

An alternative – and mathematically equivalent - way to represent serial correlations is to
use as a state variable the inflow in the previous stage, at-1. The procedure is then:

initialize the end-of-horizon future cost function αT+1(vT,aT-1) ← 0
for t = T, T-1, ..., 1

for each storage value vt = v
1
t, ..., v

m
t  , ... , v

M

t

for each previous inflow scenario at-1 = a
1

t-1, ..., a
k

t-1, ..., a
K

t-1

for each inflow in t conditioned to previous inflow a
k

t-1: at = a
1
t, ..., a

l
t, ..., a

L

t

solve the dispatch for initial storage v
m
t  and conditioned inflow a

l
t:

αl
t(v

m
t , a

k
t-1) = Min ct(ut) + αt+1(v

l
t+1,a

l
t)

subject to (4.4)
v

l
t+1 = v

m
t  - ut - st + a

l
t

v
l

t+1 ≤ v
_
; ut ≤ u

_

next
calculate the expected operation cost over all inflow scenarios:

αt(v
m
t ,a

k
t-1) = ∑

l=1

L

 pkl×αl
t(v

m
t , a

k
t-1)

next
next
create a complete future cost function αt(vt,at-1) for the previous stage by
interpolation over the values {αt(v

m
t ,a

k
t-1), m = 1, ..., M; k=1, ..., K}.

next

v
1

t+1

v
l

t+1

a
k

t-1

v
m
t

v
L

t+1

a
L

t

at

vt+1

vt

a
l
t

a
1
t

at-1

Figure 4.7 – SDP with at-1 as a state variable
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4.6 SDP Scheme Limitations

The SDP scheme is straightforward to implement and has been used for several years in
most hydro-dominated countries (e.g. [2],[3]). However, as seen above, the SDP recursion
requires the enumeration of all combinations of initial storage values and previous inflows.
As a consequence, computational effort increases exponentially with the number of
reservoirs, the well-known “curse of dimensionality” of dynamic programming. This is
illustrated in the table below, which shows the number of combinations for different
system sizes, assuming that that each of the state variables for reservoir storage and inflow
is divided into 20 levels.

# of
plants

# of
states

1 202 =   400
2 204 =   160 thousand
3 206 =   64 million
4 208 ≈   25 billion
5 2010 ≈ 10 trillion

For this reason, it has become necessary to develop computationally feasible state-space
schemes. The traditional approach, still adopted in many countries, has been to reduce
system dimensionality by the aggregating system reservoirs into one reservoir that
represents the energy production capability of the cascade [3]. This scheme is in some
cases coupled with the use of partial dynamic programming schemes (typically, calculation
of separate future cost functions for each basin) [4]-[7].

More recently, an approach based on the analytical representation of the future cost
function, known as stochastic dual dynamic programming (SDDP) [8]-[10] has been
applied in several countries in South and Central America, plus USA, New Zealand, Spain
and Norway1. The SDDP scheme does not require discretization of the state space and, as a
consequence, alleviates the computational requirements of the stochastic DP recursion.

                                               
1 A related scheme, called constructive dynamic programming, has been applied to the Australian system
[11].
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5. THE DUAL DYNAMIC PROGRAMMING SCHEME

5.1 The SDDP algorithm

5.1.1 Piecewise Approximation of the Future Cost Function

The Dual DP scheme is based on the observation that the FCF can be represented as a
piecewise linear function, i.e. there is no need to create an interpolated table. Furthermore,
it is shown that the slope of the FCF around a given point can be analytically obtained from
the one-stage dispatch problem (4.1). Figure 5.1 illustrates the Dual DP calculation of
expected operation cost and FCF slope for the last stage, initial state = 100% (step (c) of
the traditional DP procedure)

1 2 T-1 T cost

expected operation cost

slope = derivative of op. cost
with respect to storage

Figure 5.1 - Dual DP - Calculation of First FCF Segment

The last-stage dispatch problem is shown below (note that the future cost function in this
stage, αT+1(vT+1), is set to zero):

zT = Min cT(uT) multipliers
subject to (5.1)

vT+1 = vT - uT - sT + aT πh

vT+1 ≤ v
_

πv

uT ≤ u
_

πu

It is well known from LP theory that there is a set of simplex multipliers associated to the
constraints of problem (5.1) at the optimal solution. These multipliers represent the
derivative of the optimal solution value (operation cost in this case) with respect to a
perturbation in the constraint right-hand side. In particular, the multiplier associated to the
water balance equation, πh, represents the derivative of zT with respect to a variation in
initial storage vT:

πh = ∂zT/∂vT (5.2)

We see in Figure 5.1 that expression (5.2) corresponds to the slope of the future cost
function for stage T-1. The linear segment can also be interpreted as a (linear) series
expansion of the FCF around the initial storage vT.
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Figure 5.2 shows the calculation of operation cost and FCF slopes for each state in stage T.
We see that the FCF αT(vT) for stage T-1 corresponds to the piecewise cost surface
produced by taking the linear segment with the highest cost value in each state (convex
hull).

1 2 T-1 T
cost

piecewise future cost

surface for stage T-1

Figure 5.2 - Calculation of a Piecewise FCF for Stage T-1

The hydrothermal dispatch for the previous stage T-1 is represented as a LP problem:

αT-1(vT-1) = Min cT-1(uT-1) + αT

subject to (5.3)
vT = vT-1 - uT-1 - sT-1 + aT-1

vT ≤ v
_

uT-1 ≤ u
_

αT ≥ ϕn
T vT + δn

T  for n = 1, ..., N

The future cost function is represented by the scalar variable αT and N linear constraints
{αT ≥ ϕn

T vT + δn
T}, where N is the number of linear segments. As shown in Figure 5.3, the

inequalities {αT ≥ ...} represent the piecewise characteristic of this function (for any vT, the
segment with the highest value ϕn

T vT + δn
T will always be binding).

vT

ϕn
T

δN
T

δ1
T

δn
T

Figure 5.3 – piecewise linear future cost function
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5.1.2 Backward Recursion Scheme

The recursive calculation of the piecewise linear future cost functions is very similar to the
standard stochastic DP scheme:

set number of linear segments N = number of initial storage values M

initialize future cost function for the last stage as zero: {ϕ n
T+1 and δ n

T+1} = 0 for n = 1, ..., N

for t = T, T-1, ..., 1

for each storage value vt = {v
m
t , m = 1, ..., M}

for each inflow scenario at = a
1
t, ..., a

k
t, ..., a

K

t

solve the one-stage scheduling problem for initial storage v
m
t  and inflow a

k
t:

α
k
t(v

m
t ) = Min ct(ut) + αt+1 simplex

subject to multiplier (5.4)
vt+1 = v

m
t  - ut - st + a

k
t   π

k
ht

vt+1 ≤ v
_

ut ≤ u
_

αt+1 ≥ ϕ n
t+1vt+1 + δ n

t+1 n = 1, ...,N
next
calculate the coefficient and constant term for the mth linear segment of the future
cost function in the previous stage:

ϕm
t  = ∑

k=1

K

 pk×π
k
ht and δm

t  = ∑
k=1

K

 pk×α
k
t(v

m
t ) - ϕ

m
t ×v

m
t

next
next

5.1.3 Lower bound calculation

At first sight, there are no substantial differences between the Dual DP procedure in 5.2
and the traditional DP scheme in 4.3.2. Note, however, that the traditional scheme had to
create a new future cost function table in each stage by interpolation of the discrete values
{αt(v

m
t )}. As a consequence, the required number of points in the table for a system of I

hydro plants is at least equal to the 2I combinations of extreme points (full/empty).

In the Dual DP scheme, the piecewise linear segments can be used to extrapolate the
future cost function values, i.e. it not necessary to use all combinations of points to obtain
a complete (although approximate) future cost function. Moreover, if a smaller number of
initial storage values is used, a smaller number of linear segments will be generated. As
seen in previous Figure 5.3, the resulting future cost function, which is based on the
maximum value over all segments, will then be a lower bound to the “true” function.
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As a consequence, the future cost function for the first stage is a lower bound z_ to the
optimal solution of the hydrothermal scheduling problem:

z_ = α1(v1) (5.5)

5.1.4 Upper bound calculation

If we also had a way of calculating an upper bound z
_
 to the optimal solution value, this

would allow an strategy of incrementally increasing the accuracy of the problem solution,
i.e. start with a small set of initial volumes, calculate upper and lower bounds, and increase
the number of points if necessary.

5.1.4.1 Simulation Scheme

This upper bound can be obtained by a Monte-Carlo simulation of system operation,
using the set of future cost functions produced by the recursion scheme in 5.2. This is due
to the fact that the only future cost function that can result in the optimal expected
operation cost is the optimal function itself; all others, by definition, have to result in
higher operation costs.

The simulation scheme is implemented in the following steps:

define a set of inflow scenarios at = {a
1
t, ..., a

m
t , ..., a

M

t } for all stages t = 1, ..., T

for each inflow scenario at = a
1
t, ..., a

m
t , ..., a

M

t

initialize storage value for stage 1 as v
m
t  = v1

for t = 1, ... , T

solve the one-stage scheduling problem for initial storage v
m
t  and inflow a

m
t :

Min ct(u
m
t ) + αt+1

subject to (5.6)
v

m
t+1 = v

m
t  - u

m
t  - st + a

m
t

v
m
t+1 ≤ v

_

u
m
t  ≤ u

_

αt+1 ≥ ϕ n
t+1v

m
t+1 + δ n

t+1 n = 1, ...,N

next

calculate total operation cost zm for simulation scenario m as the sum of all immediate
costs along the study period:

zm = ∑
t=1

T

 ct(u
m
t )

next
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5.1.4.2 Confidence Interval

The expected operation cost is estimated as the mean total cost over all simulation
scenarios:

ẑ = 
1
M

 ∑
t=1

T

 zm (5.7)

Because we used a Monte-Carlo simulation, there is an uncertainty around the “true”
(population) expected value for z

_
. The 95% confidence interval is given by:

z
_
 ∈ [ẑ - 1.96σ̂; ẑ + 1.96σ̂] (5.8)

where σ̂ is the standard deviation of the estimator, given by:

σ̂ = [
1

M-1 ∑
t=1

T

 (zm - z
_
)2]½ (5.9)

5.1.5 Optimality Check

Optimality is achieved when the lower bound z_ calculated in (5.5) is inside the confidence
interval (5.8). Note that, because of sampling variation, the lower bound can sometimes
exceed the upper bound mean estimate ẑ.

5.1.6 New Iteration

If the lower bound is outside the confidence interval, the backward recursion step 5.2 is
executed again with an additional set of storage values. The natural candidates for the new
values are the volumes {v

m
t , m = 1, ..., M}produced in the simulation step 5.1.4.1.

Note that the linear segments calculated in the previous iteration are retained, because the
piecewise future cost function is given by the maximum over all segments. In other words,
it is possible to gradually improve the future cost function representation.
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6. ANALYTICAL REPRESENTATION OF UNCERTAINTIES IN DUAL DP

6.1 Time-Independent Uncertainties

In the same way as traditional DP, the Dual DP scheme can represent uncertainties that
have no time dependence (e.g. equipment outage and short-term load forecast uncertainty)
in a straightforward way (see section ---).

6.2 Time-Dependent Uncertainties

In addition, the Dual DP scheme can represent analytically several types of uncertainty
resulting from time-dependent stochastic processes without increasing computational
effort. This feature will be initially illustrated for the case of inflows and then extended to
other variables.

6.2.1 Representation of Inflow Serial Correlation

In order to represent serial correlation in SDDP, we model inflows as a continuous Markov
process (linear autoregressive model) rather than a Markov chain:

(at - µt)
σt

 = φ1
(at-1 - µt-1)

σt-1
 + φ2 ξt (6.1)

where:
µt inflow mean
σt standard deviation
φ1 and φ1 model parameters
ξt independent random variable

We use the formulation of section 4.5, where the state variables are the reservoir storage
at the beginning of stage t, vt, and the inflow in the previous stage, at-1. This is illustrated
in the equations below, which show the dispatch problem for stage t, with initial storage
v

m
t  and previous inflow a

m
t-1:

αl
t(v

m
t ,a

m
t-1) = Min ct(ut) + αt+1 simplex

subject to           multiplier (6.2)
vt+1 = v

m
t  - ut - st + a

l
t   π l

ht

vt+1 ≤ v
_

ut ≤ u
_
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The inflow for stage t, a
l
t, is obtained by applying the Markov process (6.1):

a
l
t = σt×[φ1 

a
m
t-1 - µt-1

σt-1
 + φ2 ξ

l
t] + µt (6.3)

where ξl
t is sampled from the corresponding probability distribution.

The linear approximation of the future cost function for the previous stage will now have
two coefficients, based on the derivatives of αl

t(v
m
t ,a

m
t-1) with respect to v

m
t  and a

m
t-1 at the

optimal solution.

The first coefficient is calculated in the same way as the independent case:

∂αl
t/∂vt = π l

ht (6.4)

The second is calculated through the chain rule:

∂αl
t/∂at-1 = ∂αl

t/∂at×∂at/∂at-1 (6.5)

The term ∂αl
t/∂at also corresponds to π l

ht, because both v
m
t  and a

l
t are in the same water

balance equation. In turn, the term ∂at/∂at-1 is calculated from the inflow model parameters
in (6.3):

∂at/∂at-1 = σt×φ1/σt-1 (6.6)

The recursion scheme is implemented as follows:

1) generation of M inflow sequences along the study period

initialize {a
m
0}, m = 1, ..., M

for t = 1, ..., T
for m = 1, ..., M

sample a random variable ξ
m
t

calculate the inflow for stage t conditioned to previous inflow a
m
t-1:

a
m
t  = σt×[φ1 

a
m
t-1 - µt-1

σt-1
 + φ2 ξ

m
t ] + µt

next

next
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2) backward recursion

for t = T, T-1, ..., 1
for m = 1, ..., m

retrieve the pair [storage, past inflow] {v
m
t , a

m
t-1}

for l = 1, ..., L

sample a random variable ξl
t

calculate the inflow for stage t conditioned to previous inflow a
m
t-1:

a
l
t = σt×[φ1 

a
m
t-1 - µt-1

σt-1
 + φ2 ξ

l
t] + µt

solve the one-stage scheduling problem for v
m
t  and a

k
t:

αl
t(v

m
t ,a

m
t-1) = Min ct(ut) + αt+1

subject to (6.7)
v

l
t+1 = v

m
t  - ut - st + a

l
t

v
l

t+1 ≤ v
_

ut ≤ u
_

αt+1 ≥ ϕ n
t+1vt+1 + γ n

t+1a
l
t + δ n

t+1 n = 1, ...,N

calculate the coefficients of the future cost function approximation for the
previous stage as shown in (6.4) through (6.6)

next
next

next

v
1

t+1

v
l

t+1

a
m
t-1

v
m
t

v
L

t+1

a
L

t

at

vt+1

vt

a
l
t

a
1
t

at-1

piecewise
linear future
cost function
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Note that a
l
t is a known value when problem (6.7) is solved. As a consequence, γ n

t+1a
l
t is

added to the constant term δ n
t+1 when the one-stage dispatch problem is solved. In other

words, the computational effort of the Dual DP scheme does not change with the increase
in the state space, as the derivatives are calculated analytically.

6.2.2 Representation of Additional Uncertainties

The same procedure of the previous section can be applied to represent uncertainties on all
parameters in the problem right-hand side. For example, load in the stage can be modeled
as another auto-regressive process:

dt = σdt×[φd1 
dt-1 - µdt-1

σdt-1
 + φ2 ξt] + µdt (6.8)

Replacing the implicit definition of immediate cost function ct(ut) – see (3.5) - in the
dispatch problem (6.7), we have:

αl
t(v

m
t ,a

m
t-1,d

m
t-1) = Min ∑

j=1

J

 cj gt + αt+1 simplex

subject to multipl. (6.9)

vt+1 = v
m
t  - ut - st + a

l
t   π l

ht

vt+1 ≤ v
_

ut ≤ u
_

∑
j=1

J

 gtj = d 
l
t - ρ uts   π l

dt

αt+1 ≥ ϕ n
t+1vt+1 + γ n

t+1a
l
t +θ n

t+1d 
l
t +δ n

t+1 n = 1, ...,N

where the load value d 
l
t in stage t is obtained from the application of the auto-regressive

model to the previous value d
m
t-1, similarly to the inflow modeling. The multiplier π

k
dt

associated to the load supply equation represents the system “spot price” ($/MWh).

The derivatives of α
k
t(v

m
t ,a

m
t-1,d

m
t-1) with respect to storage and previous inflow are as

discussed previously. The derivative with respect to the previous load is given by:

∂αl
t/∂dt-1 = ∂αl

t/∂dt×∂dt/∂dt-1

(6.8)
= π

k
dt×σdt×φd1/σdt-1
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6.3 Limitations in the Analytical Representation of Uncertainties

The analytical representation of time-dependent uncertainties cannot be directly extended
to the unit operation cost of thermal units, {cj}. Because those costs are in the objective
function, the optimal solution value αl

t is a concave function of {cj} (see Figure 6.2). In
contrast, as shown in Figure 6.3, αl

t is a convex function of the values discussed so far
(storage, inflows and load), all of which are in the problem right-hand side.

As a consequence, the optimal solution value has a saddle shape when those parameters
are jointly taken into account, and cannot be approximated by piecewise linear cost
functions. In this case, it becomes necessary to represent cost uncertainty explicitly, as will
be described next.

ct

αt(ct)

Figure 6.2 – Variation of operation cost with fuel costs

vt

αt(ct)

Figure 6.3 – Variation of operation cost with storage
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7. JOINT SCENARIO/ANALYTICAL REPRESENTATION OF UNCERTAINTY

Suppose there are K operating cost scenarios in each stage t, represented by the immediate

cost functions {c
k
t(ut)} for k = 1, ..., K and t = 1, ..., T. The transition probabilities among

scenarios are represented by the following Markov chain:

t+1→→
t ↓↓

c
1

t+1
... c

l
t+1

... c
L

t+1

c
1
t

p11 p1l p1L

... ... ...

c
k
t

pk1 pkl pkL

... ... ...

c
K
t

pK1 pKl pKL

This uncertainty is represented in the Dual DP scheme as follows:

1) generation of M operating cost sequences along the study period

initialize the cost scenario for stage 0 as c
k
0 for m = 1, ..., M

for t = 1, ..., T
for m = 1, ..., M

retrieve the cost scenario k associated to sequence m in stage t-1
generate a cost scenario l for stage t conditioned to the previous scenario k:

divide the [0,1] range into L intervals; the size of each interval is proportional
to pkl, the transition probability from k in stage t to l in stage t+1
randomly sample from uniform random variable U(0,1) and identify the
interval l corresponding to the sampled value

next
next

2) generation of M inflow sequences along the study period

initialize {a
m
0}, m = 1, ..., M as the initial inflow scenario (observed in stage 0)

for t = 1, ..., T
for m = 1, ..., M

sample a random variable ξt

calculate the inflow for stage t conditioned to previous inflow a
m
t-1:

a
m
t  = σt×[φ1 

a
m
t-1 - µt-1

σt-1
 + φ2 ξt] + µt

next

next
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3) backward recursion scheme

for t = T, T-1, ..., 1

for m = 1, ..., M

retrieve the pair [storage, past inflow] associated with sequence m in stage t-1:

{v
m
t , a

m
t-1}

identify the operating cost scenario c
k
t  associated with sequence m in stage t

retrieve the transition probabilities {pkl, l = 1, ..., L} from cost scenario k in stage
t to scenario l in t+1

for n = 1, ..., N

sample a random variable ξ
n
t

calculate the inflow for stage t conditioned to previous inflow a
m
t-1:

a
n
t = σt×[φ1 

a
m
t-1 - µt-1

σt-1
 + φ2 ξ

n
t] + µt

solve the one-stage scheduling problem for v
m
t , a

n
t and c

m
t :

α
k
t(v

m
t ,a

m
t-1c

k
t) = Min c

k
t(ut) + ∑

l=1

L

 pkl α
l

t+1(v
m

t+1,a
n
tc

l
t+1)

subject to (7.1)
vt+1 = v

m
t  - ut - st + a

n
t

vt+1 ≤ v
_

ut ≤ u
_

The conditioned future cost functions α l
t+1(v

m
t+1,a

n
tc

l
t+1) are represented by

their piecewise linear approximations:

Min α l
t+1 simplex

subject to multiplier

α l
t+1 ≥ ϕ n

t+1vt+1  γ
n

t+1a
n
t + δ n

t+1 for n ∈ Cl     µ
n
αt

where n ∈ Cl indicates linear segments labeled with cost class #l in stage t+1

calculate the coefficients of the future cost function approximation for the
previous stage as shown in (6.4) through (6.6); label this segment with the
current cost scenario k

next

next

next
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Figure 7.1 illustrates the recursion scheme. The storage and inflow state variables are
represented analytically as piecewise linear functions. In turn, the cost scenarios are
represented as if they were discrete state variables. Note, however, that this separation
between future cost functions conditioned to scenarios 1 and 2 is carried out though the
labeling of the linear segments, and there is no additional computational effort involved.

v
m

t+1

v
m

t+1

vt

a
m
t-1

v
m
t

pk1

pkL

a
k
t

a
k
t

at

vt+1

at-1

vt

at

vt+1

at-1

piecewise linear
future cost function
conditioned to cost
scenario # L

piecewise linear
future cost function
conditioned to cost
scenario # 1

Figure 7.1 - joint scenario/analytical representation of uncertainty
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8. MAXIMIZATION OF SPOT REVENUES

The procedure described in the previous section can be used to determine the operating
policy that will maximize the expected spot revenues of a set of plants.

Let {i ∈ E} and (j ∈ E} represent the set of hydro and thermal plants belonging to
enterprise E (typically, a utility or an independent power producer).

Suppose there are K spot price scenarios in each stage t, represented as {πk
dt} for k = 1, ...,

K and t = 1, ..., T. As described in the previous section, the transition probabilities among
those scenarios are represented by a Markov chain, as shown below.

t+1→→
t ↓↓

π 1
dt+1

... π l
dt+1

... π L
dt+1

π 1
dt

p11 p1l p1L

... ... ...

π k
dt

pk1 pkl pkL

... ... ...

πK
dt

pK1 pKl pKL

The scheduling problem is implemented in the following steps:

1) generation of M spot price sequences along the study period

initialize the spot price scenario for stage 0 as π k
d0 for m = 1, ..., M

for t = 1, ..., T
for m = 1, ..., M

retrieve the spot price scenario k associated to sequence m in stage t-1
generate a price scenario l for stage t conditioned to the previous scenario k using
the sampling procedure described in the previous section:

next
next

2) generation of M inflow sequences along the study period

identical to the procedure in the previous section.
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3) backward recursion scheme

for t = T, T-1, ..., 1

for m = 1, ..., M

retrieve the pair [storage, past inflow] associated with sequence m in stage t-1:

{v
m
t , a

m
t-1}

identify the spot price scenario πk
dt associated with sequence m in stage t

retrieve the transition probabilities {pkl, l = 1, ..., L} from price scenario k in stage
t to scenario l in t+1

for n = 1, ..., N

calculate the inflow a
n
t for stage t conditioned to previous inflow a

m
t-1 using

the same procedure as in the previous section.

solve the one-stage scheduling problem for v
m
t , a

n
t and πk

dt:

α
k
t(v

m
t ,a

m
t-1πk

dt) = Max ∑
i∈E

 πk
dt×ut(i) + ∑

j∈E

 (πk
dt-cj)×gtj + ∑

l=1

L

 pkl β
l

t+1

subject to (7.1)
vt+1 = v

m
t  - ut - st + a

n
t

vt+1 ≤ v
_

ut ≤ u
_

β l
t+1 ≤ ϕ n

t+1vt+1 + γ n
t+1a

n
t + δ n

t+1 for n ∈ Cl

where n ∈ Pl indicates linear segments labeled with price class #l in stage t+1

calculate the coefficients of the future cost function approximation for the
previous stage as shown in (6.4) through (6.6); label this segment with the
current price scenario k

next

next

next


