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Optimal Generation and Transmission Expansion
Planning Addressing Short-Term Constraints with

Co-optimization of Energy and Reserves
Alessandro Soares, Ricardo Perez, Fernanda Thome

Abstract—The penetration of variable renewable energy (VRE)
in electrical systems has changed the way the expansion planning
is treated. This kind of resource has great variability in small
amounts of time, which makes it important to represent hourly
constraints that requires chronology. Besides that, the generation
reserves should also be adjusted in order to capture the intermit-
tent effect, and since many countries use rapid thermal plants as
part of these reserves, unit commitment and ramp constraint have
also become more significant. In this paper we propose a MILP
expansion planning model that can represent hourly time steps
while maintaining reasonable computational times, where both
investment and operation problems are simultaneously solved.
Because the planning horizons are long (decades), the resolution
of the entire horizon in a single optimization problem would
be computationally infeasible for large real systems, making it
necessary, therefore, to apply a horizon decomposition heuristic
in smaller sub-horizons, and use the representation of typical
days and seasons to reduces the size of the problem.

Index Terms—Expansion Planning, Transmission Planning,
Hourly Representation, Renewables, Optimization, Integer Pro-
gramming

NOMENCLATURE

I. INTRODUCTION

THE interest on optimal power system expansion plan-
ning has increased worldwide. In developing countries

of Latin America, Asia and Africa, with high load growth
and limited financial resources, the emphasis is on the most
cost-effective expansion plan [1]–[3]. In developed countries,
load growth is usually flat. In these cases, Renewable Energy
Sources (RES) are being built as part of decarbonization
policies and to displace more expensive thermal plants [4]–[7].
In both cases, selecting the ”best” of a group of alternatives is
what characterizes the combinatorial nature of the expansion
planning problem.

The main objective of the expansion planning process is to
guarantee an appropriate balance between electricity supply
and demand, i.e. to determine the optimal set of generating
plants and transmission routes that should be constructed to
meet the demand requirements along a study horizon (mid and
long term), while minimizing a cost function considering: (i)
investment (capital) and operation (fuel, O&M, etc.) costs of
generation plants and (ii) penalties of energy not supplied, also
called deficit costs.
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In general terms, this decision process involves meeting
economic, reliability and environmental criteria, within the
framework of national policies on energy. In addition, one of
the greatest challenges is how to deal with the uncertainties
inherent in the planning process, such as the load growth, the
hydrological inflows and the generation availability, especially
in renewable based systems. Taken all the aforementioned facts
into account, the expansion planning problem is modeled as a
large and complex mixed integer multistage stochastic problem
that must be solved by specialized optimization algorithm.

This paper presents a description of the methodology as-
sociated with the OptGen model [8], a commercial computa-
tional tool for energy systems expansion planning, where two
”Solution Strategies” are available:
• The benders decomposition strategy, proposed in [9]: A

decomposition of the investment and operation problem,
where the master is a MILP investment problem and the
slave is a multistage stochastic optimization of the oper-
ational problem that is solved using the SDDP algorithm,
first proposed in [10];

• The co-optimization strategy, which is the methodology
described in this paper

The main characteristics of the model are:
• Study horizons from 1 year up to several decades;
• Many different candidate projects may be contemplated

in the study, such as:
– Production components: hydro, thermal and renew-

able plants (wind, solar, biomass, etc.);
– Interconnection links and transmission circuits (lines,

transformers, DC links etc.);
– Storage devices such as Batteries, Hydro pump sta-

tions, etc.
– Gas pipelines, production nodes, regasification sta-

tions.
• Detailed project’s financial data, such as, investment

costs, payment schedules, life-time, construction time;
• Detailed project specific data, such as, decision type

(obligatory or optional), decision variable type (binary,
integer or continuous), maximum and minimum en-trance
dates, generating unit entrance schedule, etc.;

• Additional constraints, such as, firm energy/capacity con-
straints, exclusivity, association and precedence between
projects, minimum and maximum additional capacity,
generation capacity targets and so on;

• Unit commitment constraints
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• Ramping constraints
• Co-optimization of energy and reserves

In summary, the objective of OptGen is to determine a least-
cost investment schedule for the construction of new plant ca-
pacity (hydro, thermal and renewable projects), regional inter-
connections (or detailed transmission circuits), gas production
sources and gas pipelines. This is obtained by optimizing the
trade-off between investment costs to build new projects and
the expected value of operating and deficit costs.

This paper is organized as follows. In the Section II, a
review of the current state-of-the-art policies, methodologies
and models regarding systems with a high level of renew-
able penetration is presented. In Section III, we discuss the
assumptions used by the methodology in order to make it
computational tractable. In Section IV, we analyze how the
uncertainties are taken into account in the proposed model. In
Section V, we provide a detailed formulation of the proposed
methodology. Finally, in Section VI, the final conclusions are
presented.

II. LITERATURE REVIEW

The increasing economic competitiveness of wind and solar
generation sources, also called variable renewable energy
sources (VRE), has widely studies in the literature. These
energy resources reduces green-house gas emissions, as stud-
ied in [11]. Besides that, [12] showed that in a renewable
energy economy, since renewable energy potential is available
everywhere, the countries that heavily depends on fossil fuel
imports will be able to use renewable energy as a manner
to achieve energy independence, i.e, they will have greater
energy security and more freedom to take the energy decisions
that suit them, reducing its vulnerability to import fossil fuels
(particularly, oil and natural gas).

However, the fast penetration of these new sources has also
raised some concerns for both planners and operators that are
highly studies in the literature: (i) most of these sources are
non-dispatchable, i.e., their generation cannot be controlled by
the system operator [13]–[15]; and (ii) their energy production
presents strong variability, i.e., the production can change
significantly from one hour to the next [16]–[19].

As can be seen, the VRE penetration ends up causing
representative impacts on the net demand profile. In addition
to the change in the profile, it is worth noting the raise of net
demand ramps and their respective inclinations with the greater
renewable penetration. These impacts lead to new operational
challenges, which stand out:

• Over-supply situations: periods when the renewable
generation is higher than the demand to be met (for
example, in the middle of the night in regions with
strong night winds or during the day in regions with
a significant solar power capacity). [20] in hydropower-
dominated regions;

• Fast upward and downward ramps: dispatchable plants
must have the ability to fast respond to the increase and
decrease of intermittent renewable generation to maintain
supply reliability and system stability;

• Increasing thermal cycling: possible increase in the
number of startups and shutdowns of thermal plants in
the system due to renewable generation intermittency;

There are several studies in the literature that adresses these
challenges. For example, [21] analyzes forms of efficiently
curtail renewable generation in over-supply situations in Ger-
many and [22] analyzes the historical operation and current
practices of curtailment in the United States. Besides that,
several works analyze needs for thermal flexibility due to
renewable generation [23]–[25]

Because of its importance, expansion planning problems are
vastly discussed in the literature. There are several decompo-
sition approaches model in the literature. In [9] a Benders
decomposition between investment problem and SDDP algo-
rithm is proposed. Since this methodology is very scalable,
stochastic and produces optimal solution, it has been used in
several real-case studies, such as [26]–[28]. The work in [29]
also proposes a decomposition where the master is a MILP
investment problem and the slave a short-term deterministic
operating model, not taking into account uncertainties.

Since those decomposition algorithm requires convexity
in the operation problem, there are some constraints such
as unit commitment, that requires binary variables. In order
to deal with that, there are several studies proposing the
co-optimization between investment and operation, so that
it could be solved with a MILP. For example, [30]–[33]
proposes the co-optimization with some assumptions in order
to make the MILP computational tractable. Since it may be
hard to solve a huge MILP, most of the co-optimization
methodology proposes to aggregate the days of the year into
representative days, reducing computational time. [34] showed
that the clustered model (using representative days) leads to
expansion planning results very similar to the unclustered
model (considering all of the days of the year).

III. SOLUTION METHODOLOGY

Similar to the works in [30]–[33], the proposed model uses
the co-optimization between the investment and operation.
Also, some assumptions to cluster the days of the years into
representative days are used in order to reduce computational
effort. Besides that, a rolling horizon scheme is implemented,
in order to split the horizon into windows of a year, also
in order to reduce computational effort. The next section
introduces the concept of the rolling horizon, seasons and
typical days.

A. Horizon Decomposition Heuristic
Since the planning horizons are long, in order to solve the

expansion problem when applying co-optimization of invest-
ment and operation, the horizon is decomposed into annual
sub-horizons through the forward strategy in time, that is, a
problem of co-optimization of the investment and operation is
solved for each year in a rolling horizon scheme. An optimum
expansion plan is calculated per year, this decision is fixed,
and a new optimization problem is set for the following year,
considering the investment decisions taken in the previous year
as fixed and completing the expansion plan, when necessary,
as shown in Figure 1
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Fig. 1. Horizon decomposition heuristic

TABLE I
COMPARING BLOCKS AND HOURS RESOLUTION SIZE OF THE PROBLEMS

Constraints Blocks Hours

Water balance constraints 114 +80,000

Load balance constraints 30 +4,000

Maximum generation & turbining constraints 1499 +290,000

Maximum & minimum volume constraints 228 +165,000

Total 1461 +520,000

B. Typical days and seasons

Since the operation is solved with hourly representation, it
may result in a large and computationally intractable problem,
given the size of studies that envision long-term horizons in
the planning process, and since the proposed model solves a
MILP that aims to minimize investment costs and the expected
value of operating costs, subject to uncertainties in hydrology
and generation of intermittent renewable sources.

As a way of exemplifying this issue, taking a real energy
system into account, the Table I summarizes the size of the
optimization problems for 1 month and 5 blocks versus 744
hours.

As can be seen, the size of the optimization problems
increases significantly. In addition to that, while evaluating
real systems’ expansion, it is also necessary to use multiple
scenarios to incorporate the uncertainties to which the system
will be exposed (hydrology, renewable generation, etc.) and,
consequently, the addition of all constraints per scenario in the
optimization problem. For this reason, it is necessary to create
a strategy that reduces the size of the problem, but without
compromising the quality of the results.

In order to reduce the computational effort required by
these optimization problems, it is necessary to introduce the
concepts of seasons and representative (typical) days, which in
addition to enabling the solution of these problems in accept-
able computational times, captures the effects of intermittent
generation in the system.

The first step of this strategy is to group the months of the
year into seasons, as shown in Figure 2. Once the seasons
are defined, the representative days within each of them, here
referred to as typical days, should be defined. This type of
representation aims to reduce the number of days analyzed
within each season, since the daily demand profiles are not
usually so different, especially within the pre-defined seasons.
The Figure 3 illustrates this grouping of real days on typical
days for a set of seasons in a given year. The allocation
presented in the figure was made in a generic way, with
illustrative purposes.

Fig. 2. Mapping months into seasons

Fig. 3. Mapping typical days inside each season

IV. HANDLING UNCERTAINTIES

In SDDP model, the long-term production costing decision
making process (generation of each plant, interconnections
between regions, circuit flows, etc.) consists in a stochastic
optimization problem that seeks to balance the immediate cost
and the expected value of the future cost (the expected value
comes from the uncertainty about future hydrology, wind,
consumption, availability of equipment, etc.). This problem
is intrinsically related to storage devices that create a time-
coupling between stages. Therefore, today’s operating deci-
sions, such as storage levels, may impact the mid and long-
term operation, affecting thus the future operating costs. For
further details, please refer to the SDDP Methodology Manual.

Taking the aforementioned explanation into account and
given that this expansion approach performs the investment
and operation co-optimization within the same problem, the
operational policy is not calculated through SDDP algorithm,
the proposed model does not consider the calculation of a
Future Cost Function (FCF) for the system in each stage of
the operation, since its calculation would require iterations
of the system operation which reflects in the simulation of
the operation in each stage several times until the FCF is
sufficiently well approximated. It is intuitive to see that the
SDDP application to calculate the FCF is the most realistic
way to simulate the operation of the system, but, as it is
intended to apply co-optimization, the operation of the hydro
reservoirs throughout the year should be simplified.

The formulation proposed ensures that the initial storage
of the reservoir of each hydroelectric plant at the beginning
of each year of the study horizon will be equal to the final
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storage of that year. This operating strategy prevents the model
from completely depleting the reservoirs present in the system
during the year, optimizing its use throughout the year. The
concept behind this modeling is a multi-deterministic opera-
tion, where the operation of the reservoirs is optimized for each
separate scenario, without the incorporation of hydrological
uncertainty into the decision-making process of the system
operation in each scenario. It is plausible to explain that this
simplification of the operation of large hydropower plants with
large reservoirs has an optimistic bias, however, its application
indicates that it is an approximation that presents satisfactory
results for investment decision making and calculation of the
expansion plan.

V. PROBLEM FORMULATION

The expansion planning problem of an energy system is
primarily formulated as a mathematical programming problem,
expressed by the formulation below. We suppose, for the sake
of simplicity, that all plants are candidate projects to the
expansion problem.

A. Investment Constraints

1) Precedence between projects:

xω − xζ ≥ 0 ∀ω, ζ ∈ P prek , ∀k ∈ RPRE (1)

2) Mutually exclusive projects:∑
ω∈P ex

k

xω ≤ 1 ∀k ∈ Rex (2)

3) Associated projects:

xω − xζ ≥ 0 ∀ω, ζ ∈ P ask , ∀k ∈ Ras (3)

4) Minimum and maximum installed capacity / firm energy
/ firm capacity:∑

ζ∈P cap
k

wkζxζ ≥ wk ∀k ∈ Rctr (4)

∑
ζ∈P cap

k

wkζxζ ≤ wk ∀k ∈ Rctr (5)

B. Thermal plants constraints

1) Minimum and maximum energy generation:

gjγj,t,d,h,s ≤ gj,t,d,h,s ≤ gjγj,t,d,h,s ∀j, t, d, h, s (6)

2) Ramp up and ramp down generation:

gj,t,d,h,s − gj,t,d,h−1,s ≤ ∆UP
j ∀j, t, d, h, s (7)

gj,t,d,h−1,s − gj,t,d,h,s ≤ ∆DN
j ∀j, t, d, h, s (8)

3) Unit commitment:

stj,t,d,h,s ≥ γj,t,d,h,s − γj,t,d,h−1,s ∀j, t, d, h, s (9)
γj,t,d,h,s ≤ xj ∀j, t, d, h, s (10)
γj,t,d,h,s ∈ {0, 1} ∀j, t, d, h, s (11)

The constraint (10) model the relation between commitment
and investment decisions, preventing a thermal plant to be
committed without being invested before. This constraint
make continuous investment decisions to be incompatible with
thermal commitment constraints (because it requires binary
variables).

C. Hydro plants constraints

1) Water storage balance: Since the model does not con-
sider the Future Cost to go Function (FCF), it forces water
reservoir levels of all hydro plants to finish at the same level
they started (initial storage = final storage), preventing the
system to deplete all water in the reservoir at the end of the
horizon, in order to avoid thermal operative costs. This strategy
forces the model to optimize reservoir operation in order to
utilize all the water inflows that arrived in the analyzed period.

(12)
vi,t+1,s = vi,t,s + ai,t,s − (ui,t,s + si,t,s)

+
∑
m∈Mi

(um,t,s + sm,t,s) ∀i, t, s

vi,T,s = vi,0,s ∀i, s (13)

2) Energy production: The equation (14) guarantees that
the hourly energy production of the hydro plants is equal to
the total energy turbined in the season. This equation assumes
that the hydro plants have total regulation within season, i.e,
they may freely transfer water, from an hour to another.

∑
d,h

Dt,dgi,t,d,h,s = ρiui,t,s ∀i, t, s (14)

gi,t,d,h,s ≤ gixi ∀i, t, d, h, s (15)

3) Minimum and maximum storage:

vi,t,s ≤ vixi ∀i, t, s (16)
vi,t,s + δvi,t,s = vixi ∀i, t, s (17)

4) Minimum and maximum turbining:

ui,t,s ≤ uixi ∀i, t, s (18)
ui,t,s + δui,t,s = uixi ∀i, t, s (19)

5) Minimum total outflow:

ui,t,s + si,t,s ≤ qixi ∀i, t, s (20)
ui,t,s + si,t,s + δqi,t,s = qixi ∀i, t, s (21)

D. Renewables contraints

Renewable plants generation decision must be lower than
renewable generation scenarios.

gl,t,d,h,s ≤ ψl,t,d,h,sxl ∀l, t, d, h, s (22)
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E. Batteries

1) Energy storage balance: Battery storage balance has
hourly time steps, as in equation (23). Like the hydro plants,
batteries also have regulation constraints (24), where the initial
energy storage is equal the final energy storage.

vb,t,d,h+1,s = vb,t,d,h,s + η+b q
+
b,t,d,h,s − q

−
b,t,d,h,s ∀b, t, d, h, s

(23)
vb,t,d,24,s = vb,t,d,0,s ∀b, t, d, s

(24)

2) Maximum storage, charge and discharge:

vb,t,d,h,s ≤ Vbxb ∀b, t, d, h, s (25)

q+b,t,d,h,s ≤ q
+
b xb ∀b, t, d, h, s (26)

q−b,t,d,h,ss ≤ q
−
b xb ∀b, t, d, h, s (27)

F. Transmission lines constraints

1) Maximum flow: The flow variables for the network
representation are f+sk,t,d,h and f−sk,t,d,h, where these two pos-
itive variables represent the flow in both direction of each
line, where + means positive oriented and − means negative
oriented:

f+k,t,d,h,s ≤ f
+
k xk ∀k, t, d, h, s (28)

f−k,t,d,h,s ≤ f
−
k xk ∀k, t, d, h, s (29)

2) Second Kirchhoff law: The model considers two types of
transmission lines: DC-Links and Circuits. Second Kirchhoff
law will only be represented for circuits.

(30)
f+k,t,d,h,s − f

−
k,t,d,h,s − γk

(
θb+k ,t,d,h,s

− θb−k ,t,d,h,s
)

≥ −M(1− xk) ∀k
∈ Kp, t, d, h, s

(31)
f+k,t,d,h,s − f

−
k,t,d,h,s − γk

(
θb+k ,t,d,h,s

− θb−k ,t,d,h,s
)

≤M(1− xk) ∀k
∈ Kp, t, d, h, s

3) Area import/export constraints: Area import/export con-
straints can limit the maximum amount of energy that enters
or leave a specific electrical area.

For import constraints

∑
k∈K+

a

f+k,t,d,h,s +
∑
k∈K−

a

f−k,t,d,h,s ≤ Impa ∀a, t, d, h, s

(32)

∑
k∈K+

a

fk,t,d,h,s +
∑
k∈K−

a

fk,t,d,h,s ≥ Impa ∀a, t, d, h, s

(33)

For export constraints

∑
k∈K−

a

f+k,t,d,h,s +
∑
k∈K+

a

f−k,t,d,h,s ≤ Expa ∀a, t, d, h, s

(34)∑
k∈K−

a

f+k,t,d,h,s +
∑
k∈K+

a

f−k,t,d,h,s ≥ Expa ∀a, t, d, h, s

(35)

G. Generation constraint
Generation constraint is an operative constraint which guar-

antees that a certain group of generators (thermal and hydro
plants) always generate energy above or below a threshold.

∑
j∈JG

c

gj,t,d,h,s +
∑
i∈IGc

gi,t,d,h,s + δgc,t,d,h,s ≥ gc ∀c, t, d, h, s

(36)∑
j∈JG

c

gj,t,d,h,s +
∑
i∈IGc

gi,t,d,h,s + δgc,t,d,h,s ≤ gc ∀c, t, d, h, s

(37)

H. Reserve balance constraints

gj,t,d,h,s + rj,t,d,h,s ≤ gjγj,t,d,h,s ∀j, t, d, h, s (38)

rj,t,d,h,s ≤ ∆UP
j ∀j, t, d, h, s (39)

gi,t,d,h,s + ri,t,d,h,s ≤ gixi ∀i, t, d, h, s (40)

η−b q
−
b,t,d,h,s + rb,t,d,h,s ≤ η−b q

−
b xb ∀b, t, d, h, s (41)

rb,t,d,h,s ≤ η−b vb,t,d,h,s ∀b, t, d, h, s (42)

(43)

∑
j ∈JR

c

rj,t,d,h,s +
∑
i ∈IRc

ri,t,d,h,s +
∑
b ∈BR

c

rb,t,d,h,s

+ δRc,t,d,h,s ≥ Rc,t,d,h,s∀c, t, d, h, s

I. Load balance constraints

(44)

∑
j ∈Jn

gj,t,d,h,s +
∑
i ∈In

gi,t,d,h,s +
∑
l ∈Ln

gl,t,d,h,s

+
∑
b ∈Bn

(
η−b q

−
b,t,d,h,s − q

+
b,t,d,h,s

)
+
∑
k ∈K+

n

(
f+k,t,d,h,s − f

−
k,t,d,h,s

)
−
∑

k ∈K−
n

(
f+k,t,d,h,s − f

−
k,t,d,h,s

)
−DEn,t,d,h,s

+ dn,t,d,h,s = DIn,t,d,h,s ∀n, t, d, h, s

J. Objective function
Let’s define βt,d,s as:

βt,d,s =
psDt,d

(1 + rt)t−1
(45)

Then the problem’s objective function is the minimization
of the following costs:
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1) Generation Cost:

(46)

∑
t,d,s

βt,d,s

∑
j,h

(cojgj,t,d,h,s + csjstj,t,d,h,s)

+
∑
i,h

coigi,t,d,h,s


2) Violation Cost:

(47)

∑
i,t,s

ps
(1 + rt)t−1

(cδvi δ
v
i,t,s + cδui δ

u
i,t,s + cδqi δ

q
i,t,s)

+
∑
t,d,s

βt,d,s

∑
c,h

(cδGc δ
G
c,t,d,h,s + cδRc δ

R
c,t,d,h,s)


3) Deficit Cost:

(48)
∑
t,d,s

βt,d,s
∑
n,h

cddn,t,d,h,s

4) Elastic Demand Gain:

(49)
∑
t,d,s

βt,d,s
∑
n,h

PEn DEn,t,d,h,s

5) Investment Costs:

(50)

∑
j ∈Jx

cijxj +
∑
i ∈Ix

ciixi +
∑
l ∈Lx

cilxl

+
∑
b ∈Bx

cibxb +
∑
k ∈Kx

cikxk+

VI. CONCLUSIONS

The model proposed here considers explicit operative con-
straints in the investment model. As a result, it can represent
non-convexities in the operative constraints (such as commit-
ment decisions). On the other hand, due to the increase of the
problem’s complexity, some simplifications have to be made.
In this approach, we consider yearly time steps opposed to
full horizon steps and representative (typical) days instead of
real days within a year.

Typical days are days within a season that are considered
representative of the input data. Thus, instead of representing
all days of a season, the user selects a certain number of typical
days to represent the season and associates these typical days
with actual days. For instance, it is common to differentiate
weekdays from Saturdays and Sundays, but the number of
typical days and their definitions are flexible and chosen by
the user.

The great advantages of this model are:
• The co-optimization of investment and operating prob-

lems inside the same MILP al-lows the representation of
unit commitments and other binary variables;

• The hourly chronological representation in the operation
enables to capture the production variability of intermit-
tent renewable sources and the generation ramps.

Besides the great advantages of this solution strategy, it’s
also important to remember its caveats. As explained in

Section IV, the operative simulation is performed in a multi-
deterministic way, where the operation of the reservoirs is
optimized for each scenario individually, without the incor-
poration of hydrological uncertainty into the decision-making
process of the system operation (as it is done when the SDDP
methodology is applied and the FCF is calculated for each
time stage). It is plausible to explain that this simplification of
the operation of large hydropower plants with large reservoirs
has an optimistic bias, however, its application indicates that
it is an approximation that presents satisfactory results for
investment decision making and calculation of the expansion
plan.

Furthermore, it’s also worth noting that since investment and
operation problems are co-optimized in this solution strategy,
then the more scenarios are contemplated in the problem,
the higher computational effort will be demanded to solve
the MILP. As a consequence, for large scale systems, the
computational time might limit the number of scenarios that
can be contemplated.

Finally, the proposed model is suitable for most real-case
studies of expansion planning of renewable-dominated regions,
representing hourly chronology, short-term constraints such
as unit commitment and ramping, co-optimizing energy and
reserves and with assumptions and approximations to make it
computational tractable.
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