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Abstract
Many capacity planning models used today are based on a Benders decomposition scheme [1, 2]

composed of: (i) a MIP-based “investment module” which determines a trial expansion plan; (ii) a
SDDP-based “operation module” which calculates the expected operation costs for the trial plan;
and (iii) Benders cuts from the operation to the investment module, whose coefficients are calculated
from the expected marginal costs of the capacity constraints in the operation module at the optimal
solution.

Although this “traditional” planning model has been successfully applied in many countries, it
has an inherent limitation, which has become more significant with the penetration of renewables
with short construction times, such as solar: the optimal expansion plan is “static”, i.e. investment
decisions do not change as the system state evolves (e.g. load growth is lower than expected, a very
rainy season occurs etc.). As a consequence, there is a growing interest in the calculation of an
integrated stochastic investment & operations strategy.

This paper describes an extension of the SDDP algorithm [3] that allows the calculation of this
integrated strategy. The first (and obvious) step of this extension is to represent investment decisions
as state variables in the SDDP recursion. The second step is to represent the construction time of each
candidate project in the recursion; this requires an efficient modeling of time delays in the update of
state variables. The final step is to represent the integrality of investment decisions in the multistage
stochastic optimization scheme. This is done by applying a customized Lagrangian scheme to the
scheduling/investment subproblem of each stage and scenario that produces the strongest possible
convex cut to the previous stage’s future cost function.

The application of the proposed algorithm will be illustrated in realistic capacity planning studies
of the Central America system.

1 “Traditional” G&T Expansion Planning Model
Figure (1) illustrates the main components of a generation/transmission capacity planning model

which represents the system operation by multistage stochastic programming techniques (in this case,
the SDDP algorithm).

1.1 Investment module
The binary variables xt,i, xt,j , xt,r and xt,k represent respectively the construction of candidate

projects (hydro i, thermal j, renewable r and circuit/transformer k) in stage t. The sets of candidate
projects are represented as Ix, Jx, Rx and Kx. In turn, the sets of existing generation/transmission
devices are Ie, Je, Re and Ke.

The investment→operation Benders decomposition iterations are indexed by m = 1, . . . , M . We
show below the investment problem after M iterations.

Min
∑
t

∑
i∈Ix

Iixt,i +
∑
j∈Jx

Ijxt,j +
∑
r∈Rx

Irxt,r +
∑
k∈Kx

Ikxt,k + w (1a)

xt,i ≥ xt−1,i t = 2, . . . , T ; i ∈ Ix (1b)
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Figure 1: Components of a “traditional” capacity expansion planning model

xt,j ≥ xt−1,j t = 2, . . . , T ; j ∈ Jx (1c)

xt,r ≥ xt−1,r t = 2, . . . , T ; r ∈ Rx (1d)

xt,k ≥ xt−1,k ∀t = 2, . . . , T ; k ∈ Kx (1e)

w ≥
∑
t

∑
i∈Ix

µmt,ixt,i +
∑
j∈Jx

µmt,jxt,j +
∑
r∈Rx

µmt,rxt,r +
∑
k∈Kx

µmt,kxt,k + µm0t

 m = 1, . . . , M (1f)

1.2 Operation module

Given the trial optimal investment decisions
{
x∗t,i

}
,
{
x∗t,j

}
,
{
x∗t,r

}
and

{
x∗t,k

}
of the investment

module in the M -th iteration of the Benders decomposition scheme, we solve the stochastic scheduling
problem using the SDDP algorithm, described next.

1.3 SDDP Formulation
1.3.1 Notation

Indices

t = 1, . . . , T time stages (typically weeks or months)
τ = 1, . . . , intra-stage time blocks (e.g. peak/medium/low demand or 168 hours in a week)
s = 1, . . . , S scenarios for each stage t produced by the stochastic models (typically inflows and renewable

generation; also loads, equipment availability and fuel costs)
l = 1, . . . , L set of scenarios for stage t+ 1 conditioned to scenario s in stage t
i = 1, . . . , I storage devices (typically hydro plants; also fuel storage, batteries, emission limits and some

types of contracts)
m ∈Mi set of hydro plants immediately upstream of plant i
j = 1, . . . , J dispatchable devices (typically, thermal plants; also, some controllable renewables and price-

responsive demand)
r = 1, . . . , R non-dispatchable devices (typically, wind, solar and biomass)
n = 1, . . . , N transmission network buses
k = 1, . . . ,K transmission network components (circuits, transformers and FACTS devices such as phase

shifters and smart wires)
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p = 1, . . . , P number of hyperplanes (Benders cuts) in the future cost function

Decision variables for the operation problem in stage t, scenario s

vt+1,i stored volume of hydro i by the end of stage t
ut,i turbined volume of hydro i stage t
νt,i spilled volume of hydro i in stage t
et,τ,i energy produced by hydro i in block τ , stage t
gt,τ,j energy produced by thermal plant j in block τ , stage t
αlt+1 present value of expected future cost from t+ 1 to T conditioned to scenario l in t+ 1

Known values for the operation problem in stage t, scenario s

âst,i lateral inflow to hydro i in stage t, scenario s (âst set of inflows for all hydro plants)
v̂st,i stored volume of hydro i in the beginning of stage t, scenario s (v̂st set of stored volumes for

all hydro plants)
vi maximum storage of hydro i
ui maximum turbined outflow of hydro i
φi production coefficient (kWh/m3) of hydro i
gj maximum generation of thermal plant j
cj variable operating cost of thermal plant j
r̂st,τ,r energy produced by renewable plant r in stage t, block τ , scenario s
d̂t,τ demand of block τ , stage t

Multipliers

πht,i multiplier of the storage balance equation of hydro i (see problem formulation)
πat,i multiplier of the conditioned inflow equation of hydro i (see problem formulation)

pth Benders cut coefficients

ϕ̂hpt+1,i coefficient of hydro plant i’s storage, vt+1,i

ϕ̂ap
t+1,i coefficient of hydro plant i’s inflow, alt+1,i

ϕ̂opt+1 constant term

Stochastic streamflow model coefficients

µ̂t,i mean of the lateral inflow to hydro i in stage t.
σ̂t,i standard deviation of the lateral inflow to hydro i in stage t.
ρ̂t,i serial correlation of the lateral inflow to hydro i in stage t.

1.4 Problem Formulation
Figure (2) shows the main components of the operation problem for stage t, scenario s:

1. SDDP state variables at the beginning of the stage (in this example, initial storage v(t) and inflow
along the stage, a(t));

2. reservoir storage balance equations, which determine the hydro turbined outflow, u(t);
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Figure 2: Main components of SDDP’s operation problem for stage t, scenario s

3. power balance equation, which determines the least-cost operation of the thermal plants required
to meet the residual load (after subtracting hydro generation and renewable production). In the
SDDP formulation, the resulting operation cost is known as the immediate cost function (ICF);

4. future cost functions (FCF) l = 1, . . . , L of the SDDP state variables for the next stage: the
final storage v(t+ 1) and l = 1, . . . , L conditioned inflow scenarios a(t+ 1, l).

5. the objective function: minimize the sum of immediate cost ICF and the mean future cost 1
L

∑
FCFl

Objective function

αt (v̂st , âst ) = Min
∑
j

cj
∑
τ

gt,τ,j + 1
L

∑
l

αlt+1 (2a)

Storage balance for each stage

vt+1,i = v̂st,i + âst,i −
(
ut,i+νt,i

)
+
∑
u∈Ui

(
ut,u+νt,u

)
← πht,i (2b)

Note: for notational simplicity, we do not represent in this formulation real-life features of the storage
balance equations such as evaporation, filtration, water diversion for irrigation and city supply, transpo-
sition and others.

Storage limits

For the existing hydro plants, the storage limit is a given value, vi

vt+1,i ≤ vi ∀i ∈ Ie (2c)

For the candidate hydro plants, the storage limit v∗i depends on the investment decision x∗t,i at the
current iteration of the Benders decomposition scheme (investment module):

vt+1,i ≤ v∗i
(

= vi × x∗t,i
)

∀i ∈ Ix ← πvt,i (2d)

Note that the SDDP operating module “sees” both existing and candidate storage limits vi and v∗i
as given values. In other words, the operating module does not “know” that is being run as part of a
Benders decomposition scheme with the investment module. The investment information is only used
explicitly in the calculation of the Benders cuts from the operation to the investment module. One ad-
vantage of this scheme that the same model used in operations studies can be used in planning studies,
without any modification.

Turbined outflow limits

ut,i ≤ ui ∀i ∈ Ie (2e)

4



ut,i ≤ u∗i
(

= ui × x∗t,i
)

∀i ∈ Ix ← πut,i (2f)

The same logic of the storage limit (2d) applies to the turbined outflow (2f).

Hydro generation

et,i = φiut,i (2g)

For notational simplicity, hydro generation is represented here as a linear function of the turbined
outflow. In real-life applications, other factors are modeled such as the variation of reservoir head with
storage, increase of tailwater with total outflow, encroachment from the downstream reservoirs.

∑
τ

et,τ,i = et,i (2h)

et,τ,i ≤ ei (2i)

Note that it is not necessary to have investment variables for hydro energy production because this
is already done for turbined outflow.

Thermal generation

As in the hydro case, the generation capacity of candidate plants changes with the investment module
iterations.

gt,τ,j ≤ gj ∀j ∈ Je (2j)

gt,τ,j ≤ g∗j
(

= gj × x∗t,j
)
∀j ∈ Jx ← πgt,τ,j (2k)

As in the previous cases, we show a simple representation of thermal generation in this formulation.
In actual applications, there are models for efficiency curves, multiple fuels, fuel storage and unit com-
mitment.

Renewable generation

Renewable generation is represented as energy production scenarios
{
r̂st,τ,r

}
in the power balance

equations, described next.

Transmission network equations and constraints

The first set of equations represents the power balance in each bus (Kirchhoff’s first law)

Sft,τ + et,τ + gt,τ = d̂t,τ − r∗st,τ ← πdt,τ,j (2l)

where:

• S is the N×K network incidence matrix, whose kth column contains ±1 for the rows corresponding
to the terminal nodes (buses) of circuit k; and zero for the others.

• ft,τ is the K-dimensional vector of circuit flows
{
ft,τ,k

}
.

• et,τ is the N -dimensional vector of hydro generation. The energy production et,τ,i of each hydro i
is in the row of its respective network bus, n(i) (all other values are zero).
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• gt,τ is the N -dimensional vector of thermal generation. The energy production gt,τ,j of each ther-
mal plant j is in the row of its respective network bus, n(j) (all other values are zero).

• d̂t,τ and r∗st,τ are the N -dimensional vectors of load and renewable generation, where each power
injection is in the row of its respective network bus (all other values = 0). For the existing renew-
able plants (r ∈ Re) , r∗st,τ = r̂st,τ,r. For the candidate renewable plants (r ∈ Rx) , r∗st,τ = r̂st,τ,r×x.∗t,r.

Next, we represent Kirchhoff’s second law. For the existing circuits k ∈ Ke, we have:

ft,τ,k = γk

(
θt,τ,F (k) − θt,τ,T (k)

)
∀k ∈ Ke (2m)

where γk is the susceptance of circuit k; θt,τ,F (k) and θt,τ,T (k) are the nodal voltage angles at (respec-
tively) the “from” and “to” terminal buses of circuit k, represented as F (k) and T (k).

For the candidate circuits, the second law is represented as the following constraint:∣∣∣ft,τ,k − γk(θt,τ,F (k) − θt,τ,T (k))
∣∣∣ ≤ ∆∗t,k

(
= Mk

[
1− x∗t,k

])
← πγt,τ,k (2n)

whereMk is a “big M” parameter. We can see that if the candidate circuit is built in the current Benders
iteration (x∗t,k = 1), constraint (2n) becomes equal to equation (2m) of the existing circuits. Conversely,
if x∗t,k = 0, constraint (2n) is relaxed.

Finally, the circuit flow limits are represented as:∣∣ft,τ,k∣∣ ≤ fk ∀k ∈ Ke (2o)

∣∣ft,τ,k∣∣ ≤ f∗t,k (= fkx
∗
t,k

)
∀k ∈ Kx ← πft,τ,k (2p)

Conditioned inflow scenarios for t+1

For simplicity of presentation, we show a multivariate AR(1) model. In practice, SDDP uses a
multivariate periodic autoregressive (PAR(p))) model with up to six past time stages:(

alt+1,i − µ̂t+1,i

)
σ̂t+1,i

= ρ̂t,i ×

(
âst,i − µ̂t,i

)
σ̂t,i

+
√

1− ρ̂2
t,i × ξ̂

l
t,i ← πat,i

(2q)

where the parameters
{
µ̂t,i, σ̂t,i, ρ̂t,i

}
are respectively the mean, standard deviation and serial correlation

of the lateral inflow to hydro i in stage t. Spatial dependence is represented through a correlation matrix
for the sampled residuals

{
ξ̂lt,i

}
.

Note: For clarity of presentation, the stochastic streamflow models are shown explicitly. In the actual
SDDP implementation, they are represented implicitly.

Future cost functions
As it is well known in SDDP, the FCFs are represented implicitly by a set of hyperplanes.

αlt+1 ≥
∑
i

ϕ̂hpt+1,i × vt+1,i +
∑
i

ϕ̂apt+1,i × a
l
t+1,i + ϕ̂opt+1 ∀p = 1, . . . , P;l = 1, . . . , L (2r)

1.5 Benders cut to the investment module
As it is also well known, the SDDP algorithm is composed of three steps: (i) backward recursion;

(ii) forward simulation; and (iii) convergence check. Here, we describe a fourth step used in planning
models, which is the calculation of marginal capacity information for a new (M + 1)th Benders cut to the
investment module in the final probabilistic forward simulation (after convergence has been achieved):
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w ≥
∑
t

∑
i∈Ix

µM+1
t,i xt,i +

∑
j∈Jx

µM+1
t,j xt,j +

∑
r∈Rx

µM+1
t,r xt,r +

∑
k∈Kx

µM+1
t,k xt,k + µM+1

0t

 (3)

The Benders cut coefficients are obtained from the multipliers associated to the following constraints:
(i) hydro storage and turbined outflow limits (2d) and (2f); (ii) thermal generation capacity limits (2k);
(iii) energy production for the renewables (2l); and (iv) Kirchhoff’s second law and flow limits for the
transmission components (2m) and (2n).

In the operation problem formulation, we indicated in parenthesis the implicit representation of the
investment decision variable (e.g., constraint (2d), reproduced below):

vt+1,i ≤ v∗i
(

= vi × x∗t,i
)

(4)

This implicit representation is useful for the coefficient calculations, as shown next:

µM+1
t,i = 1

S

∑
s

(
vi × πvst,i + ui × πust,i

)
(5a)

µM+1
t,j = 1

S

∑
s

∑
τ

(
gj × π

gs
t,τ,j

)
(5b)

µM+1
t,r = 1

S

∑
s

∑
τ

(
r̂st,τ,r × πds

t,τ,n(r)

)
(5c)

µM+1
t,k = 1

S

∑
s

∑
τ

(
−Mk × πγt,τ,k + fk × π

f
t,τ,k

)
(5d)

µM+1
0t = 1

S

∑
s

∑
τ

∑
j

cjg
∗s
t,τ,j −

∑
i∈Ix

µM+1
t,i x∗t,i −

∑
j∈Jx

µM+1
gt,j x∗t,j −

∑
r∈Rx

µM+1
t,r x∗t,r −

∑
k∈Kx

µM+1
t,k x∗t,k (5e)

2 Generation expansion strategy
As mentioned in the Abstract, one of the limitations of an expansion plan is that the construction

schedule is defined for the entire study period, and it cannot adapt to changing conditions, for example
a severe drought and/or a lower demand growth. For this, we need an expansion strategy, similar to the
operation strategy calculated by SDDP.

For clarity of presentation, we initially show a simplified expansion strategy formulation, with no
construction time and continuous investment decision. We then extend the formulation to represent
construction times and, finally, binary investment decisions.

2.1 Formulation 1: no construction time, continuous investment variables
Objective function

In the expansion strategy there are additional state variables for the investment decisions in the
previous stage, x̂t−1. The objective function is now to minimize the sum of investment costs, immediate
cost and expected future costs.

αt (v̂st , âst , x̂t−1) = Min
∑
i∈Ix

Iixt,i +
∑
j∈Jx

Ijxt,j
∑
r∈Rx

Irxt,r +
∑
k∈Kx

Ikxt,k +
∑
j

cj
∑
τ

gt,τ,j

+ 1
L

∑
l

αlt+1

(6a)

Investment decision constraints
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As seen in the investment problem formulation (1), the investment decisions in stage t depend on the
previous stage decisions as follows:

xt,i ≥ x̂t−1,i ∀i ∈ Ix ← πxt,i (6b)

xt,j ≥ x̂t−1,j ∀j ∈ Jx ← πxt,j (6c)

xt,r ≥ x̂t−1,r ∀r ∈ Rx ← πxt,r (6d)

xt,k ≥ x̂t−1,k ∀k ∈ Kx ← πxt,j (6e)

Water balance equation (same as (2b))

[. . .]

Storage and turbined outflow limits (no change for existing plants, equations)

Because investments are now decision variables, they are in the LHS of the constraints.

vt+1,i − vi × xt,i ≤ 0 ∀i ∈ Ix (6f)

ut,i − ui × xt,i ≤ 0 ∀i ∈ Ix (6g)

Hydropower equations (no change)

[. . .]

Thermal power constraints (no change for existing plants)

As in the hydro case, investment variables are now on the LHS.

gt,τ,j − gj × xt,j ≤ 0 ∀j ∈ Jx (6h)

Renewables

As seen previously, both existing and candidate renewable generation were represented as fixed values
in the RHS of the power balance equation. In this case, however, we have to represent explicitly the
candidate renewable generation as follows:

rxt,τ,r − r̂st,τ,r × xt,r ≤ 0 ∀, r ∈ Rx (6i)

Bus power balance equation

Sft,τ + et,τ + gt,τ + rxt,τ = d̂t,τ − r̂es
t,τ,r (6j)

where rxt,τ and r̂es
t,τ,r are the bus generation vectors for candidate renewables (decision variable) and

existing renewables (known values), respectively.

Transmission constraints (no change for existing circuits)
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Same investment variable changes as the generation candidates.∣∣∣ft,τ,k − γk(θt,τ,F (k) − θt,τ,T (k))
∣∣∣−Mk

(
1− xt,k

)
≤ 0 ∀k ∈ Kx (6k)

∣∣ft,τ,k∣∣− fkxt,k ≤ 0 ∀k ∈ Kx (6l)

Conditioned inflow scenarios (no change)

[. . .]

Future cost function
As expected, the FCF now represents the investment state variables.

αlt+1 ≥
∑
i

ϕ̂hp
t+1,ivt+1,i +

∑
i

ϕ̂ap
t+1,ia

l
t+1,i +

∑
i∈Ix

ϕ̂xp
t+1,ixt,i +

∑
j∈Jx

ϕ̂xp
t+1,jxt,j

∑
r∈Rx

ϕ̂xp
t+1,rxt,r

+
∑
k∈Kx

ϕ̂xp
t+1,jxt,k + ϕ̂op

t+1 p = 1, . . . , P ; l = 1, . . . , L
(6m)

2.1.1 Benders cut for the previous stage

The Benders cut for the previous stage is represented as:

αt ≥
∑
i

ϕ̂h,P+1
t,i vt,i +

∑
i

ϕ̂a,P+1
t,i at,i +

∑
i∈Ix

ϕ̂x,P+1
t,i xt−1,i +

∑
j∈Jx

ϕ̂x,P+1
t,j xt−1,j

∑
r∈Rx

ϕ̂x,P+1
t,r xt−1,r

+
∑
k∈Kx

ϕ̂x,P+1
t,k xt−1,k+, ϕ̂o,P+1

t

(7)

The cut coefficients are calculated as follows:

ϕ̂h,P+1
t,i = πht,i (8a)

ϕ̂a,P+1
t,i = πht,i +

(
ρ̂t,i
σ̂t,i

)
× πat,i (8b)

ϕ̂x,P+1
t,i = πxt,i (8c)

ϕ̂x,P+1
t,r = πxt,r (8d)

ϕ̂x,P+1
t,k = πxt,k (8e)

ϕ̂o,P+1
t =α∗t −

∑
i

ϕ̂h,P+1
t,i v̂t,i +

∑
i

ϕ̂a,P+1
t,i ât,i +

∑
i∈Ix

ϕ̂x,P+1
t,i x̂t−1,i

+
∑
j∈Jx

ϕ̂x,P+1
t,j x̂t−1,j

∑
r∈Rx

ϕ̂x,P+1
t,r x̂t−1,r +

∑
k∈Kx

ϕ̂x,P+1
t,k x̂t−1,k

(8f)
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2.2 Formulation 2: construction time, continuous investment variables
For simplicity of presentation, the formulation with construction time shown next only has hydro

plants as investment variables. In addition, we assumed that their construction time was three time
stages. Given that time stages in the operation problem are just a week or a month long, this is ob-
viously unrealistic: hydro plant construction usually takes five years. However, the number of state
variables and the logic of their updating in this simplified formulation is very similar to the real models.
The reason is that those real models use two types of time stages: years/semesters for investment deci-
sions and weeks/months for operating decisions.

Objective function

The number of state variables for each candidate is equal to their respective construction time (three
time stages, in this example):

αt
(
v̂st , â

s
t , x̂t−1, x̂t−2, x̂t−3

)
= Min

∑
i∈Ix

Iixt,i + +
∑
j

cj
∑
τ

gt,τ,j + 1
L

∑
l

αlt+1 (9a)

Investment decision constraints

As seen in the investment problem formulation of section 1, the investment decisions in stage t depend
on the previous stage decisions as follows:

xt,i ≥ x̂t−1,i ∀i ∈ Ix ← πxt,i (9b)

yt−1,i = x̂t−1,i ∀i ∈ Ix ← πyt−1,i (9c)

yt−2,i = x̂t−2,i ∀i ∈ Ix ← πyt−2,i (9d)

Water balance equation (no change)

[. . .]

Storage and turbined outflow limits (no change for existing plants)

Because of construction time, the investment decision is known at the beginning of the stage. As a
consequence, they go back to the RHS.

vt+1,i ≤ vi × x̂t−3,i ∀i ∈ Ix ← πvt,i (9e)

vt,i ≤ ui × x̂t−3,i ∀i ∈ Ix ← πut,i (9f)

Constraints for hydro generation, thermal, renewables and transmission (no change)

[. . .]

Future cost function As expected, the FCF now represents the investment state variables for the
different time stages.

αlt+1 ≥
∑
i

ϕ̂hp
t+1,ivt+1,i +

∑
i

ϕ̂ap
t+1,ia

l
t+1,i +

∑
i∈Ix

ϕ̂xp
t,ixt,i +

∑
i∈Ix

ϕ̂xp
t−1,iyt−1,i

+
∑
i∈Ix

ϕ̂xp
t−2,iyt−2,i + ϕ̂op

t+1 p = 1, . . . , P ; l = 1, . . . , L
(9g)
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2.2.1 Benders cut for the previous stage

The Benders cut for the previous stage is represented as:

αt ≥
∑
i

ϕ̂h,P+1
t,i vt,i +

∑
i

ϕ̂a,P+1
t,i at,i +

∑
i∈Ix

ϕ̂x,P+1
t−1,i xt−1,i

+
∑
i∈Ix

ϕ̂x,P+1
t−2,i yt−2,i

∑
i∈Ix

ϕ̂x,P+1
t−3,i yt−3,i + ϕ̂o,P+1

t

(10)

The cut coefficients are calculated as follows:

ϕ̂h,P+1
t,i = πht,i (11a)

ϕ̂a,P+1
t,i = πht,i +

(
ρ̂t,i
σ̂t,i

)
× πat,i (11b)

ϕ̂x,P+1
t−1,i = πxt,i + πyt−1,i (11c)

ϕ̂x,P+1
t−2,i = πyt−2,i (11d)

ϕ̂x,P+1
t−3,i = vi × πvt,i + ui × πut,i (11e)

ϕ̂o,P+1
t = α∗t −

∑
i

ϕ̂h,P+1
t,i v̂t,i −

∑
i

ϕ̂a,P+1
t,i ât,i −

∑
i∈Ix

ϕ̂x,P+1
t−1,i x̂t−1,i −

∑
i∈Ix

ϕ̂x,P+1
t−2,i x̂t−2,i

−
∑
i∈Ix

ϕ̂x,P+1
t−3,i x̂t−3,i

(11f)

2.3 Formulation 3: binary investment variables
Until now we made the simplifying assumption that the investment decisions were continuous vari-

ables. This is due to the convexity requirement of the SDDP algorithm which, in theory, would preclude
the use of binary variables in the multistage recursion. We have developed two methodologies to address
this limitation: (i) hybrid plan/strategy model; and (ii) Stronger convex cuts.

2.3.1 Hybrid Plan/Strategy model

For some types of smaller plants, such as wind, biomass and solar, the use of a continuous approxi-
mation is usually reasonable. Even for natural gas plants, depending on system size and on the existing
thermal capacity, a continuous relaxation may be acceptable. For large hydro plants, however, it is
almost always necessary to use binary variables.

Fortunately, the long construction time of hydro plants, five or more years, provides an “analytical
loophole” that allows the representation of their discrete investment decisions within the SDDP frame-
work.

The “loophole” results from the fact that the benefit/cost ratio of building a hydro plant today de-
pends on the probability distribution of future spot prices five years from now (due to the construction
period) and later. In the SDDP-based expansion strategy, this future spot price probability distribution
is conditioned to the values of today’s state variables. However, for a construction time of several years,
those initial conditions are not relevant, that is, the conditioned price probability distribution is equal
to the marginal distribution. As a consequence, the hydro investment decision (positive or negative)
in a given stage will be the same, regardless of the system state in that stage. This means that we
can represent the hydro binary decisions in the investment module of the expansion planning scheme
of section 1, while keeping the decisions on the other generation candidates, as part of the expansion
strategy scheme. The figure below illustrates the hybrid plan/strategy scheme.
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Figure 3: Hybrid Plan/Strategy Capacity Expansion Model

2.3.2 Stronger convex cuts

Thomé [4] describes a Lagrangian relaxation methodology for SDDP that produces the strongest
convex cut when the one-stage problem is non convex. This has allowed the reduction of duality gaps
when binary variables are used.

3 Case Study
3.1 Costa Rica

In this case study, we compare a “traditional” expansion plan and the proposed expansion strategy
methodology for the Costa Rica generation system.

Existing generation capacity (2016) comprises: 1,800 MW of hydro; 600 MW of thermal plants; and
180 MW of wind. Annual energy demand is 10,800 GWh.

3.2 Expansion study
We carried out a ten-year capacity expansion study. The problem parameters are:

• Annual load growth rate: 4%

• Reinforcement candidates: 885 MW of hydro and 1,000 MW of renewable generation

• Annual investment decisions

– Hydro projects: five-year construction time, binary decision
– Renewables: one-year construction time, continuous decision

• Monthly operative decisions (SDDP)

– Monthly load represented by 5 blocks
– 100 forward scenarios and 30 backward openings in SDDP algorithm

3.3 Study results
Figure (4) shows the probability distribution of total expansion cost (present value of investment +

operation costs) using the traditional planning methodology (Plan) and the proposed strategy method-
ology (Strategy). In the Plan case, investment costs are fixed and operating costs vary with system
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Figure 4: Probability distribution of total cost (investment + operation)

conditions, in particular with the hydrology. In the Strategy case, both investment and operations costs
vary with system conditions.

Initially, we observe that the expected total cost of the strategy, 1.409 billion US$, is smaller than the
plan’s expected cost, 1.467 billion. This result is consistent with the fact that the strategy is more flexible.

Figure (5) shows a scatter plot of investment decisions and system state (reservoir storage) for the
year 2020. Again as expected, we see that the strategy invests less in the scenarios with a higher storage
level, and vice-versa.

Figure 5: Investment × Stored energy [2020]
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3.4 Computational results
Plan

• Number of Benders iterations: 92

• Average number of SDDP iterations for each investment plan: 9

Hybrid Plan/Strategy:

• Number of Benders iterations (planning decisions for hydro): 57

• Average number of SDDPxp (operation + investment for renewables) iterations for each investment
plan: 18

4 Conclusions and ongoing research
4.1 Conclusions

The representation of investment decisions in the SDDP algorithm allows the incorporation of un-
certainties such as demand growth, fuel costs and hydrology in the decision-making process, which are
especially relevant in emerging economies. In addition, it allows the representation of construction times,
which is an important advantage of renewable sources, especially in countries with high uncertainty.

4.2 Further research
A recent paper by Ahmed et al [5] showed that the Lagrangian relaxation cuts mentioned in section

2.3.2 are tight when all state variables are binary. This means that we can have an SDDP-based globally
optimal strategy with discrete investment variables. We are currently testing this proposed scheme with
systems with only thermal and renewable plants. The formulation and algorithm description can be
found in [6].

References
[1] B. G. Gorenstin, N. M. Campodónico, J. P. da Costa, and M. V. F. Pereira, “Power system expansion

planning under uncertainty,” 1993.

[2] M. V. F. Pereira, N. M. Campodónico, B. G. Gorenstin, and J. P. da Costa, “Application of stochastic
optimization to power system planning and operation,” 1995.

[3] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic optimization applied to energy
planning,” 1991.

[4] F. S. Thomé, M. V. Pereira, S. Granville, and M. H. C. Fampa, “Non-convexities representation on
hydrothermal operation planning using SDDP,” 2013.

[5] J. Zou, S. Ahmed, and X. A. Sun, “Nested decomposition of multistage stochastic integer programs
with binary state variables,” 2016. (Submitted for publication).

[6] F. S. Thomé, C. Metello, C. L. Lara, and S. Granville, “Multistage generation planning model for
thermal systems and renewables,” 2016.

14


	``Traditional'' G&T Expansion Planning Model
	Investment module
	Operation module
	SDDP Formulation
	Notation

	Problem Formulation
	Benders cut to the investment module

	Generation expansion strategy
	Formulation 1: no construction time, continuous investment variables
	Benders cut for the previous stage

	Formulation 2: construction time, continuous investment variables
	Benders cut for the previous stage

	Formulation 3: binary investment variables
	Hybrid Plan/Strategy model
	Stronger convex cuts


	Case Study
	Costa Rica
	Expansion study
	Study results
	Computational results

	Conclusions and ongoing research
	Conclusions
	Further research


