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Non-Convexities Representation on Hydrothermal
Operation Planning using SDDP

Fernanda Souza Thomé, Mario V. E. Pereira, Fellow Member, IEEE, Sergio Granville and
Marcia Helena Costa Fampa

Abstract—This work describes an extension of the Stochastic
Dual Dynamic Programming (SDDP) algorithm to represent non-
convexities on the hydrothermal operation planning problem
formulated as a mixed integer multistage stochastic model. One
proposed methodology makes use of a non-conventional approach
of the Lagrangian relaxation technique for convexification of the
recourse function, and a special procedure is applied in order
to find valid stronger Benders cuts to build these approximated
convex future cost functions. Discussion is made over the topic
of whether we should really worry about guarantying outer
approximations of the original functions, which could lead to
distorted strategies when dealing with highly non convex prob-
lems and, consequently, to non-economic or inadequate system
operation. By focusing on the non-convexity introduced by the
hydro production variation with storage, a more aggressive cut-
generation procedure is also proposed using a non-linear variable
transformation technique. Study cases of real hydrothermal
systems are used to make comparisons and analysis over the
dilemma of choosing the most suitable methodology for this
problem.

Index Terms—Convexification, Lagrangian relaxation, Multi-
stage stochastic optimization.

I. INITRODUCTION

HE objective of a hydrothermal operation planning prob-

lem consists in determining the optimal operating policy
for the use of a system’s generation resources in order to
minimize the total expected cost for reliable electricity demand
supply during a given time horizon. Hydrothermal systems
are mainly characterized by the uncertainty of hydrological
inflows and temporal coupling of the operative decisions, a
result of the existence of limited water storage capacity in the
reservoirs. This means that the problem consists in deciding
whether a planner should use the water in the current stage
(reducing immediate generation cost and possible rationing
in the future if there is a drought) or store the water to be
used in the future stages (leading to higher immediate cost
and possible spillage in the future if there is a wet period).
We are dealing, therefore, with a multistage stochastic problem
traditionally solved by stochastic dynamic programming (SDP)
algorithms. Generally speaking, these algorithms are based on
a recursive procedure for construction of the so-called future
cost functions (FCF), which establishes, for each system state,
the expected value of the future cost associated to the best
immediate operative decision.

Although SDP algorithms are very robust in terms of
allowing the representation of non-convex models, they require
a problem solution for each combination of the state variables
of the system. It means that these algorithms suffer from the

curse of dimensionality with state space exponential growth
and, therefore, even mid-sized hydrothermal systems become
computationally intractable.

The Stochastic Dual Dynamic Programming (SDDP) algo-
rithm, developed by Pereira in 1991 [1], which is currently
used in over 60 countries by different types of agents in
the energy sector, is the state of the art of the methods
that can handle multistage stochastic hydrothermal operation
problems, with individual representation of reservoirs, and this
is why this technique is applied in this particular work. The
SDDP methodology uses Benders decomposition to separate
the problem into single stage problems and iteratively builds
approximations of the FCFs as piecewise linear functions,
without requiring discretization of the state space.

Each iteration of the SDDP algorithm is composed by two
phases: first a forward simulation, where a finite number
of system states are selected for each stage; and second a
backward recursion, where first order approximations of the
FCFs are built for each of the selected states, using dual in-
formation of each single stage problem. These hyperplanes, or
Benders cuts, are tangent to the original function which means
that the algorithm builds outer approximations of the FCFs.
The main limitation of this algorithm, however, is requiring
convex FCFs in order to guarantee optimality, otherwise the
Benders decomposition method cannot be immediately applied
to generate distorted cuts for the problem.

In a hydrothermal system there may be several components
which make the operation planning modeling a non-convex
problem. Two examples are can be pointed out: hydro gen-
erator power output is given by the product of a production
factor, as a function of the reservoir net head variable, and the
water discharge variable, resulting in a non-convex function;
moreover, the unit commitment of power plant’s start-up and
shut-down scheduling are discrete decisions and, therefore, a
non-convex model.

Depending on the scope of the study, however, the com-
ponents can be modeled differently in order to meet an
appropriate trade-off between computational effort, technical
consistency and quality results. When dealing with the hy-
drothermal operation planning problem, solved by SDDP al-
gorithm, the use of oversimplified models, despite accelerating
the problems solution, may sometimes derive in inadequate
operation strategy, which means bad management of reservoir
levels. In particular, net head variations may often significantly
affect the system operation. This way, the application of the
SDDP algoritm on realistic hydrothermal systems require the
use of specialized convexification techniques for generating
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the FCFs approximations.

In this paper we use a MILP formulation for the hydrother-
mal problem, where thermal unit commitment are binary
decisions and hydro power production is modeled as a bilinear
function represented by a piecewise linear approximation,
accurately improved by incorporation of binary variables. The
objective of this work is to discuss, compare and propose
convexification approaches for the hydrothermal operation
problem, classified into two categories:

1) FCF convexification - Non-convex components of the
system are kept represented in the problem’s formulation and
Lagrangian relaxation technique is applied to the recourse
equations in order to obtain convex FCF approximations [3].
Since the recourse equations contain the state variables of
the problem, the resulting Lagrangian subproblem becomes
convex with respect to these variables and it can be shown
how valid Benders cuts can be extracted for any Lagrange
multiplier vector.

2) Components convexification - The original formulation
of the problem is replaced by convex approximations of the
functions which model the non-convex components, so that
traditional SDDP algorithm can be applied to the problem.
Examples of Components convexification techniques include
McCormick envelope models [4] or convex piecewise linear
functions, which can be adjusted in order to minimize the
approximation mean error.

Each convexification approach has its up and downsides:
the first one ensures that, besides constructing an outer ap-
proximation of the FCF, it could result in the convex envelope
of the function. Nevertheless, if we are dealing with a highly
non-convex problem, external approximation may never get
close enough to the original function in certain regions and
convergence may never be achieved. The second approach can
drive to a more realistic solution, by reducing approximation
errors, but since it’s not necessarily an outer approximation,
then optimality is not guaranteed. The selection of the most
suitable method to be applied on a specific problem is not a
trivial task and depends on the system’s characteristics and its
practical appliance.

An interesting property of the FCF convexification approach
is related to a non-conventional application of the Lagrangian
relaxation technique, since it’s not being used to actually
solve the original problem but to generate cuts for convex
approximations of the FCFs. In fact, the Lagrange multipliers
don’t necessarily have to be optimal in order to build a valid
cut, however, they lead to stronger approximations. In the
literature, we can find several techniques for the optimization
of the Lagrangian multipliers, including, proximal bundle
methods [5], sequential refinement [6], ascending directions
[7] and outer-approximations [8]. In general, these methods
require a large number of iterations to converge so, when
incorporated in a SDDP solution scheme, it’s even crucial the
use of efficient multipliers search procedure.

In [9] the Lagrangian relaxation approach was proposed
for a disjunctive McCormick envelope formulation but dis-
regarding the Lagrange multipliers optimization and using a
simplified SDDP approach by considering a small scenario tree
to model hydrological inflows uncertainties. One significant
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contribution of the work presented in this paper consists
in incorporating a new efficient algorithm for searching the
Lagrange multipliers in a FCF convexification approach. Based
on the fact that each single stage MILP problem is, in
practice, relatively easy to solve, then the algorithm uses the
problem’s optimal solution for two purposes: to build a locally
convexified problem whose dual solution generates a good
initial value for the multipliers; and to generate a good lower
bound for the Lagrangian subproblem solution to be used
in the update step evaluation during the iterative multipliers
search procedure.

While exploring the comparison between both convexifica-
tion criteria, this work is specially focused on solving the non-
convexity of the hydro production function. In this context, a
new component convexification methodology is also proposed,
based on the work of Suanno [10] where the problem’s non-
convexity is eliminated by applying a non-linear variable
transformation of water volume to stored energy. Unlike
the original work, this new formulation allows production
function variability representation of hydros in cascade, which
consisted in the main limitation of the original model. Such
contribution was made possible through the incorporation of
an approximated parallel modelling of the hydro system, which
consists of a spacial decoupling technique of the cascade.

This paper has the following structure: In section II the
MILP formulation of the hydrothermal problem formulation is
presented. In section III we discuss the two FCF convexifica-
tion criteria and describe the proposed improvement in the La-
gragian relaxation approach. In section IV the new component
convexification methodology is presented. The results obtained
for all approaches are presented for real hydrothermal systems
in section V. Finally, section VI contains the conclusions of
this work.

II. HYDROIHERMAL PROBLEM FORMULATION

The hydrothermal operation problem (PO) is modeled in
this paper by the following set of variables and constraints:
Sets:

" Set of time stages

I Set of hydro plants

J Set of thermal plants

M;  Set of upstream plants of hydro plant 7
Parameters:

cyj  Operative cost of thermal plant $/MWh

d;  System energy demand MWh

ay; Inflow volume of hydro plant hm?3

n;  Efficiency factor of hydro plant p.u.

_qTi Maximum generation of hydro plant MWh

w;  Minimum turbining of hydro plant hm?

u;  Maximum turbining of hydro plant hm?

v,  Minimum volume of hydro plant hm?

v;  Maximum volume of hydro plant hm?

q_tj Minimum generation of thermal plant MWh

_q_tj Maximum generation of thermal plant MWh

Variables:

Page 2 of 8
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gt;;  Generation of thermal plant MWh
xt, ;  Unit commitment of thermal plant  {0,1}
gh. i Generation of hydro plant MWh
vy Stored volume of hydro plant hm?
uy;  Turbined volume of hydro plant hm?
s¢i  Spilled volume of hydro plant hm?*
hyi  Net head of hydro plant m

wy,  Operative expected cost of stage ¢  $
«;  Approximate future cost of stage ¢t $

Energy balance: this equation ensures the system’s demand
supply for each stage:

Z ghy i+ tht,]‘ = d,. (1

i€l JEJ

Hydro balance: this equation follows the principle of mass
conservation given by the stored volume at the end of a stage
must be equal to the stored volume at the beginning of the
stage plus the inflow volumes and discounted by the outflow
volumes of the hydro plant during the stage:

Vei+ Ui+ S — E (wem + St,m) = V-1, +ai. (2)
meM;

Hydro production: this non-linear equation represents the
hydro energy production given by a turbined water volume
u,; and reservoir net head h ;:

ghei=Fk-mi-ug;i-hes. (3)

where constant £ is the product of gravity acceleration in
m/s? by the water relative density in kg/m* and a conversion
factor to MW h.

The net head of the reservoir is given by the difference
between head and tailwater levels, discounted by hydraulic
losses. When neglecting losses and tailwater variations with
the plant’s outflow volume, the net head h, ; is approximated
by a function of the stored volume v,;. The relationship
between the two variables is given by the head x volume curve,
which reflects the topographical characteristics of the reservoir
flooded area. Thus, the hydro production equation can be
expressed as a bilinear equation given by the multiplication
of a production function and the turbined volume:

ghyi = pi (vei) - ugi. 4

In this paper the bilinear constraints are represented by
a MILP model ght’:i (ve,i,ues) given by a piecewise linear
approximation using binary variables:

N M
.qht,i = § § .qhi,n,m * Yi,n,m (5)
n=1m=1
N M
Vi = E E Vi * Yijngn
n=1m=1
N M
Ui = E E Uim - Yin,m
n=1m=1

N M N M
Z Z Vi = I Z Ligp = I Z Yijgn = 1

n=1m=1 n=1 m=1

Yi,nm < Tin + Tint1,M = L.Nym=1.M

Vi S Yimn + Yijn41,1 = lNy m=1.M

Yijum = 0,m=1.N,m=1.M

zin € {0,1},n=1.(N —1)

Yim €{0,1},m=1..(M — 1)

ghui < gh,

V; S v <V

w; U < Uy
where N and M are the number of discretized points of
variables v and wu, respectively, and variables ,, ,, represent
convex combination of the points.

Thermal unit commitment: this model aims at finding opti-

mal scheduling of plant’s start-up/shut-down decisions:

gtej— gty j-wti ;<0 (6)
gtt,j - ﬂt’j : Itt,j Z O
:Iitt’j € {O7 1}

Objective function: minimization of total cost given by
the immediate cost and expected future cost associated to
operative decisions:

wy = IIliIlZ Crj- gty + g (7
J€l
Future cost function: In this paper we suppose, without loss
of generality, that v,_; are the only state variables of the
problem.

Qupr > wh g+ Z 7rf+1’,~ (vei — vf’i) , k=1.K (8
i€l

where K is the number of hyperplanes obtained so far
during the SDDP iterative procedure. For a purely linear
problem, the slopes 7 of these hyperplanes are given by the
dual variables associated to the coupling constraints (2) in the
optimal solution. However, the problem we are considering
is non-convex due to constraints (5) and (6), so no dual
information can be extracted from the solution of this problem.
Since SDDP convergence depends on the FCF convexity
property, then it’s necessary to use techniques to either con-
vexify the FCF after solving a non-convex problem (FCF
convexification), or convexify the problem before solving it
(Component convexification).
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III. CONVEXIFICATION APPROACHES

Convexification approaches are used in the construction of
FCF approximations in order to allow the use of SDDP algo-
rithm in the solution of hydrothermal operation problems. The
convergence of the algorithm depends directly on the quality
of these approximations, that is, the mismatch in relation to the
original functions, so the motivation in searching for tighten
convex approximations.

In the FCF Convexification technique based on Lagrangian
relaxation, the violation of the coupling constraints, given by
the hydro balance equations, is penalized in the objective
function by the vector of Lagrange multipliers. The multipliers
together with the solution of this relaxed MILP problem
are used to build a new hyperplane for the FCF convex
approximation. The focus of this paper, however, is on im-
proving the search for Lagrange multipliers which generate
better lower bounds for the FCF approximations. This means
that, although we are not specially interested in obtaining the
optimal multipliers, it’s important to consider the use of an
efficient strategy to ensure a strong approximation.

Let the original non-convex problem (PO) be formulated as:

PO .
w, ~ (v4—1) = min ZC‘J gty + g 9)
jel
S/t v+ g+ S — Z (W n + Stn) = Ve—1,i + Qg
meM;
k k k
[e7AS] Z 'UJL+1 + Z 7rt+1’i (Ut’i - vt,‘i) N k=1.K
iel
Z ghy i + tht,]‘ =d,
iel Jjel

ghei = .qhtlji (Ve i)
gtij— gty ;- xt; <0
gty ; — ﬂt’j ~xty ;>0
xt, ;€ {0, 1}

Then the Lagrangian subproblem (LS) can be expressed as
follows:

LS .
wy” (A, v—1) = IIIHIZ e gl + g+ (10)
Jjel
+ Z Ati (Vi—1,i+ aei — v — ugi — St

iel
+ Z (Ut,m + 3L,m)>
meM;

St a1 > wiy + wa+1,i (ve,i — vf’i) , k=1.K
i€l
Zght,i + tht,]‘ =d,
i€l Jjel
ghei = .qhtlji (ve,i,ue,)
gtej — gty ;- ot ; <0
gtt,j _-q_tl_’J : Itt,j Z O

:Iitt’j € {O7 1}
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Let w5 be the optimal solution of problem (LS) for state
vector v;_1, note that:

w® (A, vie1) = 0%+ A (v—1i —di—1q) (A1)
i€l

Since problem (LS) is a relaxation of (PO), then then
wl (A, v,_1) is an outer approximation of the original FCF
for every value of A;. However, the closer the Lagrange multi-
pliers are to the optimal value, the tighter is the approximation,
where optimal Lagrange multipliers are obtained from the
solution of the following maximization problem (LR):

w{‘"‘ (v—1) = max w{" (A, vi—1) (12)
t

As wFR (v,_y) is convex on v,y then is corresponds to
the lower convex envelope of the original FCF [2]. Never-
theless, the Lagrangian maximization problem can lead to a
high computational effort to be solved by traditional iterative
procedures. In this work we developed the following algorithm
to Lagrange multipliers optimization:

1) Solve original problem (PO) and obtain optimal values
for objective function w’’® and binary variables xt"’” and
those associated to function gh”’? = gh” (v7"?, u"?).

2) Solve locally convexified problem (LC), which corre-
sponds to problem (PO) with fixed binary variables, and obtain
optimal value of dual variables 7.

3) Use dual variables from problem (LC) as initial value for
Lagrange multipliers: A = w~¢.

4) Solve Lagrangian subproblem (LS) and obtain optimal

value for objective function w”® and variables v"“, u* and
LS
S .

5) Check stop criteria: if w™S << w"? then vector A must

be updated in order to get closer to original problem optimal
solution and then go back to step 4). However, if no significant
progress is achieved towards this goal then no further effort
should be done to decrease the duality gap of the Lagrangian
relaxation.

The Lagrange multipliers updating is done by taking steps
using the subgradient method [11] which, in many appli-
cations, has slow convergence and therefore fails to be of
real practical interest. Nevertheless, unlike those applications
where actual lower bounds of the Lagrangian subproblem are
typically unknown, in this case, the optimal solution of the
original problem (PO) is the best possible lower bound for
evaluation of step sizes:

Ati = Avi — - di (13)
where step size p and subgradient ¢; are calculated as:
wlS — PO

= (14)
g Eiel (¢i)2

__ LS LS , _LS LS LS
i = Vgi —Ut—14 — Qi T Uy S — E : (ut,m + ‘St,m)
meM;
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In summary, this methodology has an interesting approach
by taking advantage from availability of the original non-
convex problem optimal solution to efficiently drive the La-
grange multipliers searching towards its optimal value, first
by providing a way to locally convexify the problem, and
second by guarantying a good lower bound for the subgradient
method. Additionally, it also offers a measure of the problem’s
non-convexity level what bring us to questioning if lower
bound approximations of the FCF are effectively suitable for
all sort of problems.

The Component Convexification approach is a more widely
applied technique and consists in replacing the constraints
which introduce non-convexity into the problem, by a con-
vex formulation of these components. In problem (PO) the
sources of non-convexity are: the hydro production function
and thermal unit commitment decision. The linearization of
this model is done by constructing piecewise-linear convex
functions, obtained from convex hull technique combined with
hyperplanes adjustment for minimizing the approximation
mean error.

In the case of thermal unit commitment model, the following
procedure is done: Let gH, be the sum of all hydro generation
in the system such that g H, = Eiel ghy i, then an immediate
thermal cost function can be obtained by discretization of
variable g H, and solution of the following MILP problem for
each gH", n=1..N:

cty (gH[") :Iniant,j - gty (15)
jel
s/t tht,]‘ =d, — gH{"
2

gtij — gty j- ot ; <0
.qtt,j — ﬂt P . :Iitt’j Z 0
:Iitt’j € {O7 1}

where function ¢t, (gH,) can be adjusted as a convex piece-
wise linear function ch" (gH,), as illustrated in figure 1. In a
similar way, the hyperplanes of the hydro production function
.‘thlji (vt,i, ug,;) given by constraint (5) can also be adjusted as
a convex piecewise linear function gh{’; (vyi,ue,i).

The interesting aspect of this methodology lies on the fact
that all convexification effort is done only one time, before
the application of the SDDP algorithm. The new formulation
of the convexified problem (PC), used to construct the FCF
approximation, is obtained from replacing the non-convex
constraints of problem (PO) by the piecewise-linear functions:

4 ct(gh)

gH
Fig. 1. Lineanzation of non-convex component
wl'® (v,_1) = minct& (gH;) + a1 (16)
sit gH, = Zght,i
i€l
k k k
Qry1 2 Wiy + Z M1, (Ut,i - Ut,i) , k=LK
i€l
gH, = d;

E (we,m + St,m) = Vi—1,i + A
meM;

_ 3C
ghyi = ght’i (Ut,iy Ui)

Vgi+ Ui + S0 —

Note that both FCF and Component Convexification ap-
proaches presented above are generically enough to allow
more complex formulation for this problem in order to
consider further details of the system. Nevertheless, special
attention should be given to the hydro production function
due to the effect on the reservoir level management. For
this reason, a new Component Convexification methodology,
specifically developed for this function, is described in the next
section.

IV. NEwW APPROACH ON COMPONENT CONVEXIFICATION

The work of Suanno discuss all physical interpretation of
the non-linear variable transformation of water volume into
stored energy in order to overcome convexity limitations of a
hydrothermal operation problem. Nevertheless, the proposed
methodology neglects the variability on downstream plants
production function in a hydro system cascade because, since
there is no biunivocal relationship between the volume and
energy variables for those plants, the same water volume of a
head plant is associated to a different energy amount according
to each downstream plants production factor.

This paper proposes an extension of this approach by
generating approximate conversion relationships between the
plants stored energy in a hydro cascade. The relationship
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p(ve)

ev(vy)

v vy v

Fig. 2. Production function in terms of stored energy

between the reservoir stored volume and the associated energy
amount is given by the following expression:

evL:/ tp(z)-dz 17

From this equation, one can express the production function
of a plant in terms of the stored energy p(v,) — p' (ev,),
according to figure 2.

Lets suppose the hydro balance equation of a head plant 1:

Vg1 U1+ 81 = V11 Faga (18)

By applying the variable transformation, we have:

evg1 +ghiy +esg1 =evi_q1 1 +ea (19)
€
€ar1 = P (evl.,l) sag

where ea, is the reservoir inflow energy in MWh, ev; is the
stored energy in MWh and es; is the spilled energy in MWh.

We observe that, for this model, the non-convexity as-
sociated to the hydro production no longer exists and the
reformulated problem is convex. Now, lets suppose the hydro
balance equation of plant 2 which is downstream to plant 1:

Vo U2+ 82 — Uy — Sl = V1,2 T Q2 (20)

The difficulty associated to the variable transformation of
this equation is in the inflow volume that comes from the
upstream plant u; 1 + s; 1. The problem is that the equivalent
outflow energy of plant 1 and inflow energy of plant 2
associated to this same water volume, are function of their own
production coefficients. That means we are unable to directly
remove the problem’s non-convexity and then an approximate
relationship is proposed.

First step is to build an equivalent parallel representation
of the hydro system cascade by replacing each downstream

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. Y, MONTH YEAR

VitV

Fig. 3. Parallel representation of hydro system cascade

reservoir by the sum of the upstreams ones. This way, the
equations of a downstream plant become:

V12 T U2 + S = U112 a1 + a2 (21
ghio = po (V12 — Vi) w2
V12 — Vg1 < U2

where vy 12 = vy1 + vy 2, as shown in figure 3.
Now, by applying the variable transformation, this formu-
lation results:

evg 12+ ghyo +esg o = evi_q 12 +eag 12 (22)
— (s o
eag 12 = p5 (v 12 — €v 1) - (ag1 + ar2)

€V 12 — €Uy < U2

unlike the previous formulation where the aggregated storage
is the sum of both storages, in this case ev; 10 = €vy 1+ evy 2
where €v, 1 # ev,1 because the volume in the first reservoir
represents a different amount of energy in each plant.

The heuristic procedure described next was developed to
generate convex approximations of the stored energy relation-
ship between plants in a cascade.

1) First step consists in performing an operative simulation
of the system in order to capture the reservoirs water draining
dynamics. Considering full storage level situation for all reser-
voirs as an initial condition of the system, a non-linear model
was used to generate a water draining profile of the reservoirs
by optimizing the total system output energy. The draining
profile represents an estimation of the best management of the
reservoirs storage level in a hydro system cascade. Basically,
it’s used to indicate what’s the optimal storage level associated
to each reservoir in a cascade for a specific system state,
and consequently obtain the relationship between the head
plant level and the production function of downstream plants,
according to figure 4.

2) By constructing function ps (vy) from step 1, and using
the known function ewv; (vy), we are able to evaluate the
approximate functions évy (evy), according to figure 5.

3) By using the draining profile to represent a good estima-
tion of reservoir levels at each system state, we assume that
€vy (evya,evy) = évq (evy), and the problem is formulated by
the following convex approximate model:

Page 6 of 8
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tvipw) Palw) 4 lABLh l
B R HONDURAS - OPERATIVE POLICY CONVERGENCE RESULTS
hon®
Method | Num. LBnd. UBnd. | Min.UBnd | Max.UBnd
o | Iter. (MS) (MS) (MS) (MS$)
. LR1 3 16.834 20.40 19.35 21.46
LR2 3 16.93 20.39 19.35 2144
LR3 3 1696 | 2039 19.36 2143
2 CNT 2 17.65 1.1 17.05 18.38
PWL 2 20.32 20.55 19.53 21.57
z ENR 2 20.33 20.6Y 19.83 21.54
Fig. 4. Reservoir draining profile TABLE 1L
BRAZIL - OPERATIVE POLICY CONVERGENCE RESULTS
4 falvy) 4 evy(vy) - - - - -
* Method | Num. | LBnd. | UBnd. | Min.UBnd | Max.UBnd
M Iter. (MS$) (MS$) (MS$) (M$)
x x LR1 6 843.0 995.5 918.5 1072.5
LR2 6 853.1 982.9 907.2 1058.6
LR3 6 8799 9rro 904.5 1049.6
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Fig. 5. Approximate production function

evg 12 = evi—1,12 +eag12 — ghyo —es o (23)
eag 12 = py (evi12 — €vey (evg1)) - (ary + ar2)

evg 12 — €vgq (ev 1) < €va

It’s important to highlight that the extension of this approxi-
mation procedure is straight forward for the cases with several
downstream plants in the same hydro cascade.

V. CASE STUDY

In order to evaluate the convexification criteria applied
to hydrothermal operation problema considereing the non-
convex hydro production functions, the following procedure
was adopted: first we obtained the operative policy, or the
FCFs approximations, for each one of the discussed method-
ologies on this work and, then, operative simulations were
held for those functions, considering the original non-convex
model for a realistic representation of the system. Comparisons
were made for the following methods, according to the FCF
Convexification criteria:

[LR1]: Lagrangian relaxation using linear relaxation solu-
tion to obtain Lagrange multipliers;

[LR2]: Lagrangian relaxation using local convexification
solution to obtain Lagrange multipliers;

[LR3]: Lagrangian relaxation using multipliers optimization
after local convexification solution.

And, for the Components Convexification, the following
methods were considered:

[CNT]: Average production factor, neglecting hydro produc-
tion variability with storage level;

[PWL]: Approximation of hydro production by convex
piecewise-linear function adjusted for error minimization;

[ENR]: Non-linear transformation of the water volume
variables into stored energy variables.

Two different cases were used in the results analysis. The
first case contains the El Cajon dam from Honduras, whose
combination of high net head and high storage capacity of
the reservoir makes the case particularly interesting due to the
large variation of over 140% of the plant’s production factor,
depending on the reservoir storage level.

The second case represents the southeast (and part of the
mid-west) regions of the Brazilian electric system, respon-
sible for approximately 70% of the whole system’s energy
consumption. I’s energy production is predominantly hydro
based with high regulating capacity reservoirs. The system is
represented by 38 thermal plants and 98 hydro plants, whereas
18 of them have variable production factor.

For each case we used a 12 monthly stage horizon, 30
scenarios for simulation and 10 inflow discretization values for
each scenario in recursion phase. Tables I and II contain infor-
mation associated to operative policy convergence. Columns
LBnd. and UBnd. correspond respectively to the lower and up-
per bounds of the operative expected cost. Columns Min.UBnd
and Max. UBnd determine the upper bound confidence interval.

Graphics shown in figures 6 and 7 illustrate the computa-
tional time required for obtaining the FCFs approximations
and the operative expected cost resulted from the final simu-
lation for each case.
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The results obtained for models [LR1], [LR2] and [LR3]
show that the incorporation of the solution of a locally con-
vexified problem and the multipliers optimization procedure
have granted more refined FCFs approximations by increasing
the lower bound of the operative cost.

For the Components Convexification models, we observed
that the decision of ignoring production factors variability, in
case [CNT], has resulted in the worst operative strategy as
noticed by the high associated expected cost. Regarding case
[PWL] and, specially case [ENR], it was verified that, for El
Cajon system, the convexification criteria that doesn’t guaran-
tee outer approximation has performed better with regard to
computational effort and total operative cost. Nevertheless, for
the Brazilian system, there has been observed total operative
cost reduction with application of Lagrangian relaxation in the
convexification criteria, despite its high CPU time.

VI. CONCLUSIONS

The results showed that the performance of an operative
policy is based on the quality of the FCFs approximation
and, for this reason, the benefits achieved by the incorporation
of non-convexities on the hydrothermal operation model are
the warranty for investments in efficient convexification tech-
niques that allow the use of SDDP algorithm in solving these
type of problems.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. Y, MONTH YEAR

It was showed that the method based on the Lagrangean
relaxation was clearly improved by the incorporation of the
procedures proposed in this work, although the performance
for the El Cajon case indicated that the use of FCF outer
approximations may not ensure the best operative strategy
for all systems. The Components Convexification methods,
however, may not provide outer approximations for the FCFs,
but can generate particularly interesting results, specially when
applied to highly non-convex problems.

We conclude, therefore, that the selection of the most suit-
able convexification methodology to be applied on a particular
hydrothermal operation planning problem is a very important
task, but not a trivial one, since it depends primarily on
the characteristics of the system and on the study practical
application.
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