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Abstract— The optimal hourly scheduling of generation and 

transmission resources over the next day or week is a key 
function of both liberalized and centrally planned power sectors. 
The main difficulty in solving this short-term scheduling (STS) 
problem lies in the joint modeling of nonlinearities (for example, 
head variation in hydro plants and quadratic circuit losses); 
integer decisions/nonconvexities (e.g unit commitment); and 
time- and space-coupling constraints (such as the water balance 
in reservoirs and transmission network equations). Although 
several techniques, in particular Lagrangian Relaxation (LR), 
have been successfully applied to the solution of STS problems, 
some limitations appear when a large number of constraints has 
to be relaxed; also, the LR multiplier updating scheme often has 
to be “tuned” for each particular power system, thus reducing its 
flexibility. The approach presented in this paper is based on the 
transformation of STS nonlinearities and nonconvexities into 
piecewise mixed linear integer (MILP) constraints. This 
approach was found to be flexible, allowing the modeling of 
complex features of both hydrothermal generation and the 
transmission network. Also, by taking advantage of recent 
advances in commercial solver capabilities, the MILP scheme 
was found to be computationally efficient, as illustrated in case 
studies with seven countries in Latin America and Europe. 
 

Index terms— Hydroelectric-thermal power generation, 
Power generation dispatch, Power generation scheduling 

I.  INTRODUCTION 
HE objective of short-term scheduling is to determine the  
most economic hourly production schedule of the system 

resources (hydro and thermal generation, plus demand-side 
options) over the next day or week, subject to a set of 
operational constraints, such as: (i) water balance in cascaded 
reservoirs, including time delays between upstream releases 
and downstream arrivals, evaporation etc.; (ii) the operational 
characteristics of thermal plants (unit commitment, minimum 
up- and down-time etc.); and (iii) the transmission network 
equations, limits on circuit flows and quadratic losses. From 
the economics side, the objective in “traditional” systems may 
be to minimize the overall thermal production cost over the 
week, plus the expected future costs of hydro generation, 
given by end-of-period functions calculated by midterm 
scheduling models; or, in the case of liberalized systems, there 
may be an hourly price associated to each hydro and thermal 
resource. In both types of market, the short-term scheduling 
(STS) is a key function, and its optimal solution is a problem 

of great technical and commercial interest. The main difficulty 
in solving the STS problem lies in the joint modeling of 
several features, such as nonlinearities, integer decisions and 
coupling constraints for different time stages. 

In the last decade, several computational tools have been 
developed to solve the STS problem. Most of the technical 
work is based on Lagrangian Relaxation (LR) [1]-[6]. The LR 
scheme is typically used to relax constraints that couple 
several plants, such as the load supply equation and reserve 
constraints, thus decomposing a problem with J plants and T 
time steps into J (simpler) subproblems of T time steps, which 
are then solved by a specialized technique such as dynamic 
programming. At each iteration, the Lagrange multipliers are 
updated by a subgradient or other method. The LR has been 
successfully applied to a wide range of problems, in particular 
for representing unit commitment constraints in predominantly 
thermal systems. The LR scheme limitations appear when 
there is a large number of time- and space-coupling 
constraints to be relaxed, such as ramp limits, water balance in 
reservoirs and power flow constraints. In this case, the 
multiplier updating scheme becomes more complex and may 
result in slower convergence. 

Metaheuristic methods, such as genetic algorithms and 
simulated annealing [7]-[11] and [17] have also been 
extensively used. The main reasons for this type of approach 
include simplicity of implementation and flexibility (all kinds 
of constraints, and logical rules may be included; functions 
may be non smooth, etc.). Although optimality is not 
guaranteed with these methods, their proponents argue that the 
solutions found are robust. 

The basic motivation for the work presented here is to 
develop a methodology that is flexible and robust enough to 
be used in several mid-sized systems, with different mixes of 
generation and other characteristics. The solution approach is 
to transform the STS nonlinearities into piecewise mixed 
linear integer (MILP) constraints. As will be seen in the paper, 
the MILP scheme allows the modeling of complex features for 
hydro, thermal and transmission. Also, by taking advantage of 
recent advances in commercial solver capabilities, the MILP 
scheme is found to be computationally efficient, as illustrated 
in case studies with seven countries in Latin America and 
Europe. 

The paper is organized as follows. In section II, we present 
the STS problem modeling. Section III describes the 
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piecewise MILP approximations. Section IV presents and 
discusses the case studies. Finally, the major conclusions are 
discussed in Section V. 

II.  STS PROBLEM FORMULATION 

A.  Objective function 

The STS objective is to determine the least-cost hourly 
generation schedule for a weekly horizon. As shown in (1), 
the cost function has three main components: (i) thermal 
variable operating and startup costs; (ii) energy rationing 
costs; and (iii) future cost function (FCF), which couples the 
end-of-week reservoir storage levels with future operating 
costs, calculated by mid-term scheduling models: 

Z=Min ∑
t=1

T
 ∑
j=1

J
 ∑
k=1

K
 cj,t,k gj,t,k + ∑

t=1

T
 ∑
j=1

J
 sj,tyj,t + ∑

t=1

T
 ∑
n=1

N
 ψrn,t + αT 

                      (1) 

where: 
t indexes hourly stages (T = 168 stages) 
j indexes thermal plants (J plants) 
k indexes thermal plant efficiency segment (K segments) 
n indexes transmission network buses (N buses) 
cj,t variable cost (or price bid) of j in hour t and efficiency 

segment k ($/MWh) 
gj,t energy produced by j in hour t and efficiency segment k 

(MWh) 
sj,t startup cost for j in hour t ($) 
yj,t binary variable that represents start-up decision (=1, if 

plant j started in t; =0, otherwise) 
ψ rationing cost ($/MWh) 
rn,t  energy rationing  of bus n in hour t (MWh) 
αΤ    Future cost function – FCF, which relates future 

expected costs with end-of horizon storage 

B.  Hydro Plants 
Hydro modeling includes: (i) water balance; (ii) limits on 

storage and outflow; (iii) energy generation; (iv) pumped 
storage; and (v) end-of-week storage conditions. 

    1)  Water balance in each plant 

vi,t+1 = vi,t + ai,t - qi,t - qri,t - wi,t - qei,t(vi,t) 
+ ∑

m∈Mi

 [qm,t−τm,i- wm,t−τm,i]          (2) 

where: 
vi, stored volume of hydro plant i in hour t 
qi,t & wi,t  turbined and spilled volumes, respectively 
τm,i travel time between the hydro plants immediately 

upstream of plant i (m∈Mi) and plant i 
ai,t lateral (incremental) inflow plant i 
qri,t irrigation demand 
qei,t(vi,t) evaporation volume (varies linearly with storage) 

    2)  Limits on storage and outflow 

v_i,t ≤ vi,t ≤ v–i,t                (3) 

q– i,t ≤ qi,t ≤ q–i,t                (4) 

    3)  Hydro Generation 

Fig. 1 shows a typical hydro plant energy production as a 
function of storage level and total (turbined + spilled) outflow. 
The different shades denote {volume, outflow} pairs with 
similar energy output. 
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Fig.1 – Hydro production as a function of storage and outflow 

The energy production ei,t is modeled as the product of 
turbine & generator efficiency η × turbined outflow qi,t × net 
head δh. 

The efficiency, in turn, is a function η(qi,t) of the turbined 
outflow; the net head is represented as the difference between 
reservoir head – a function f1(vi,t) of storage, tailwater level 
(function f2(qi,t,wi,t) of turbined and spilled outflows) and head 
loss (function f3(qi,t) of outflow). Finally, the production is 
limited by the plant’s generator capacity P–i,t: 

ei,t = Min{P–i,t,[kη(qi,t)qi,t[f1(vi,t)-f2(qi,t,wi,t)-f3(qi,t)]}  (5) 

where k is a constant. 

    4)  Pumped storage 

The modeling of pumped storage is similar to that of hydro 
generation. The difference between the lower pump level and 
the upper reservoir level results in a negative production 
factor, which multiplied by the “pumped flow” qi,t results in a 
negative power generation (power consumed). 

    5)  End-of-week storage conditions 

The future cost function - FCF - signals the tradeoff 
between using the water along the week and storing it for 
future use. 

The FCF is a multivariate, nonseparable function F(vT+1), 
where vT+1 is the vector of reservoir storage volumes at the 
end of the week. It is usually computed by mid-term 
scheduling models using either a traditional stochastic 
dynamic programming (SDP) recursion or, more recently, a 
stochastic dual dynamic programming (SDDP) algorithm [12-
14]. 
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C.  Thermal plants 

Thermal modeling comprises minimum up and down time, 
and ramp constraints, discussed next. 

    1)  Unit commitment 

If thermal plant j is committed, its hourly production has 
lower and upper bounds; otherwise, these limits are zero: 

g_j,t xj,t ≤ gj,t  ≤  g
_

j,t xj,t            (6) 

where xj,t is a binary variable (xj,t=1 if j is dispatched in hour t; 
=0 otherwise) 

    2)  Minimum up- and down- time   

Once a plant is committed, it must remain in operation for a 
minimum number of hours: 

xj,t-1 - xj,t + xj,k ≥ 0, k=t+1..min{T,t+τu,j-1}    (7a) 

Conversely, a decomitted plant must remain offline for a 
minimum number of hours: 

xj,t-1 - xj,t + xj,k ≤ 1, k=t+1..min{T, t+τd,j-1}   (7b) 

where τd,j and τuj are respectively the minimum downtime 
and uptime of plant j (hours). 

    3)  Ramp constraints 

Any increase/decrease in power production in successive 
hours must lie within a permissible range.  

– δd ≤ gj,t - gj,t-1 ≤ δu             (8) 

where δd and δu are the down and up ramp limits (MW/h). 

    4)  Non-convex thermal cost functions 

Because of the non-linear relationship between power and 
costs, the plant total generation is modeled as the sum of the 
generation of different (linear) segments. Therefore, the 
installed capacity of the plant is discretized in K different 
segments of equal size. Certain types of thermal plants have 
higher efficiencies in converting fuel to power for higher 
power outputs. In other words, cj,t,k+1 < cj,t,k+1. Because the 
model minimizes total costs, it would dispatch the segments in 
a reverse order for plants with this characteristic, which is 
physically meaningless. In order to prevent such distortion, 
additional 0-1 variables are included in the problem 
formulation  which will enable the dispatch of segment k+1 if 
and only ff the variable associated to segment k is in its upper 
bound. A 3-segment efficiency curve we require the following 
additional constraints: 

gt,j,1 ≤ g
_

j,t xj,t /K               (9a) 

gt,j,2 ≤ g
_

j,t λj,t,2 /K              (9b) 

gt,j,3 ≤ g
_

j,t λj,t,3 /K              (9c) 

λj,t,2≤  K gt,j,1/g
_

j,t              (9d) 

λj,t,3≤  K gt,j,2/g
_

j,t              (9e) 

λj,t,2 , λj,t,3 ∈ {0,1}             (9f) 

D.  Transmission network model 

We use a linearized active power flow model with 
quadratic power losses. The network equations are: 

    1)  Load supply balance 

The first Kirchoff’s law represents the load supply balance in 
each bus. 

∑
k∈Ωn

 fk,t + pn,t = dn,t  for n = 1,., N; t=1,..,T   (10) 

where: 

n indexes the system buses (N number of buses) 
pn,t  generation at bus n, hour t = ∑

{i; j}∈n
 (ei,t+gj,t) 

dn,t load at bus n, hour t 
k indexes the circuits (K number of circuits) 
fk,t power flow in circuit k, hour t 
Ωn set of circuits directly connected to bus n 

    2)  “loop flow” equation 

This equation corresponds to Kirchhoff’s second law: 

fk,t = γk[θt(nk) - θt(mk)]  for k = 1, ..., K     (11) 

where: 
fk,t  power flow in hour circuit k, hour t. 
γk circuit susceptance (inverse of reactance) 
θt(nk) node voltage angle at the FROM bus nk

θt(mk) node voltage angle at the TO bus mk

    3   power fl w limits ) o

- f
_

k,t ≤ fk,t ≤ f
_

k,t               (12) 

    4)  circuit losses 

The power loss in each circuit k is given by: 

Lk,t = rk fk,t
2                (13) 

where rk is the circuit resistance. Circuit losses are modeled 
as additional loads at the terminal (from-to) buses of each 
circuits. The power balance equation (10) becomes: 

∑
k∈Ωn

  fk,t – 0.5Lk,t + pn,t = dn,t for n = 1,., N; t=1,..,T (14) 

III.  MILP SOLUTION APPROACH 
As mentioned in the Introduction, the STS problem (1-14) 

is difficult to solve because of nonlinearities, integer variables 
and time- and space-coupling constraints. 

In this section, we present the proposed transformations of 
the original STS into a MILP problem. 

A.  Circuit losses 
We use a piecewise linear approximation of (13) as illustrated 
in Fig.2. 
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Fig. 2 – Piecewise linear approximation of circuit losses 
 

The piecewise linear approximation is represented as the 
following set of constraints: 

Lkt ≥ akm fkt+ bkm, for k=1, .., K; m=1,.., Mk; t=1, …, T (15) 
 
where m indexes the segments (Mk is number of segments). 

The coefficient akm is calculated as: 

akm = 
∂δk

∂fk
⏐fk = fkm

 = 2rkfkm           (16) 

where fkm is the circuit flow corresponding to the mth 
segment. In turn, the constant term bkn is calculated from akm 

fkm + bkm = rk fkm
2, which gives bkm = - rk fkm

2. 
Ref [19] describes a “compact” formulation of the 

piecewise loss approximation, currently being tested, which 
reduces the number of variables and can be applied to larger 
systems. 

B.  Hydro production 
We use a convex hull approximation [16] of the 

hydropower function, as proposed in [15], to transform the 
nonlinear (and mildly nonconvex) hydropower function into a 
piecewise linear function of storage (vi,t) and total (turbined + 
spilled) outflow: 

ei,t  ≤ φi,h + γi,h v i,t+1 + ψi,h (q i,t + w i,t) for hi=1..Hi  (17) 

where hi indexes the piecewise segments required to build 
the convex hull (Hi is the number of hyperplanes); φi,h, γi,h and 
ψi,h are the hyperplane coefficients. 

C.  Future cost function 
As mentioned previously, the FCF is usually computed by 

a traditional stochastic DP recursion or by a stochastic dual 
(SDDP) scheme. The SDDP algorithm is particularly suitable 
because it automatically produces a piecewise multivariate 
FCF which can be easily “plugged” to the STS model. 

α ≥ Rp + ∑
i=1

I
 πp,i vi,T   for p = 1..P      (18) 

Where Rp and πp,i are constants calculated by the SDDP 
recursion made in the mid-long term planning. Further details 
on the FCF modeling can be found in [14]. 

IV.  STUDY CASES 

A.  Description of selected systems 
We illustrate the MILP approach with realistic data derived 

from seven countries in Europe and Latin America: Bulgaria 
(BG), Slovenia (SL), Romania (RO), Brazil (BR), Nicaragua 
(NI), Bolivia (BO) and Ecuador (EC). As will be seen in the 
descriptions that follow, those systems have a variety of sizes, 
generation mixes and modeling requirements. 

Unfortunately the data cannot be disclosed because of 
existing confidentiality agreements. The results shown for 
Bulgaria, Slovenia and Romania were provided by SEETEC 
"Southeastern Europe Electrical System Technical Support 
Project" http://www.seetec-balkans.org/, funded by the 
Canadian Development Agency (ACDI) 

    1)  Bulgaria 

There are 25 thermal plants (nuclear power, lignite, coal 
and natural gas) with startup costs and minimum uptime/ 
downtime constraints, plus 17 hydro plants (reservoirs, run-of-
river and pump storage), arranged in a complex topology, with 
travel times. Imports/Exports to neighboring countries were 
modeled as dummy thermal plants and interruptible loads. 

One of the objectives of the Bulgarian study is to 
investigate the use of hourly water values (dual variables 
associated to the water balance equations, expressed in terms 
of $/MWh) as the regulated bids of the hydro producers in the 
proposed “balancing market". 

    2)  Slovenia 

The Slovenian system has 11 thermal plants and 20 
cascaded hydro plants, in three main river systems. Exports to 
Italy, imports from Austria and exports/imports with Croatia 
are also considered. As in the previous case, the main 
objective is to derive hydro bids from the water values. 

    3)  Romania 

The Romanian system has 59 thermal units (lignite, fuel oil 
and nuclear) and 150 hydro plants located in several river 
cascades. Most of hydro plants are small and were aggregated 
into larger equivalent plants. The number of hydro plants 
considered was then reduced to 41. Except for the nuclear 
power, all thermal units are modeled with commitment 
decision variables, but not minimum uptime/downtime or 
ramps. As in the previous cases, exports and imports to/from 
neighboring countries, Bulgaria and Serbia, are modeled. 

    4)  Brazil 

The Brazilian system is hydro-dominated (92% of the 
installed capacity) with 94 cascaded hydro plants in several 
river basins. Reservoir head variation is represented. The 
generation system also has 41 thermal plants, none with 
commitment requirements. A “zonal” representation of the 
high voltage transmission system is used, with five regions 
and six major interconnections. 
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    5)  Nicaragua 

The Nicaraguan system is thermal-dominated, with 18 
power plants, some of which are modeled with commitment 
constraints. There are also 2 hydro plants and a pump. The 
HV transmission network has 65 buses and 75 circuits. 

    6)  Bolivia 

Bolivia has 24 gas-fired thermal plants; most of them open 
cycle with non-convex production costs. There are also 21 
hydro plants, either run of the river or with small reservoirs. 
The HV grid is composed of 33 buses and 34 circuits, 
Quadratic losses play a large role in determining the least cost 
dispatch. 

    7)  Ecuador 

The Ecuadorian system has 114 thermal units (mostly 
diesel and fuel oil), most of which had commitment 
constraints. There are also 4 hydro plants with seasonal 
storage. The HV network considered has 56 buses and 96 
circuits. Power exchanges with Colombia were also modeled. 

    8)  Summary of study parameters 

Table I summarizes the system parameters, and Table II lists 
the features modeled in each case. 

TABLE I – SYSTEM CHARACTERISTICS 
 

Country BG SL RO BR NI BO EC 

Thermal 25 11 62 52 18 24 114 

Hydro 17 20 41 94 3 21 4 

Buses - - - 5 65 33 56 
Circuits - - - 6 75 34 96 

 
TABLE II – MODELING REQUIREMENTS FOR EACH SYSTEM 

 
Country BG SL RO BR NI BO EC 

Horizon (h) 168 168 120 168 168 168 168 

Unit 
Commit. Yes Yes Yes No Yes No Yes 

Network  No No No Yes1 Yes Yes Yes 

Network 
Losses No No No No No Yes No 

Water 
travel time Yes No No Yes No Yes Yes 

Pump-
storage Yes No No No Yes No No 

Convex 
hull  No No No Yes No No No 

B.  STS problem solution 
Table III presents the number of constraints and decision 

variables (continuous and integer) in each STS problem. In all 
studies, the MILP model was able to find and prove the global 

optimum solution. The solution times (desktop PC with PIII, 
1.6 GHz processor and 512Mb RAM, running Xpress 14 
MILP Solver [18]) are also shown in the Table. 

TABLE III – PROBLEM SIZE AND SOLUTION TIME 
 

Country BG SL RO BR NI BO EC 
Constraints 39K 23K 40K 219K 59K 129K 419K
Continuous 
variables 28K 25K 42K 69K 55K 134K 375K

Integer 
variables 5280 3530 6960 - 960 4830 4520 

Solution Time 1.5h 1.4m 18s 9.5m 14m 2.5m 14m 

C.  Model results 

A graphical interface/database is used to extract a range of 
results from the model solution, such as thermal variable and 
startup costs, circuit flows and losses, reservoir storage level, 
spilled and turbined outflows, marginal costs, water values, 
and others. 

As an illustration, Fig. 3 shows the hydro and thermal 
hourly power production for Romania. 
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Fig. 3 – Total hourly hydro and thermal power production 

 

D.  Computational aspects 
As seen in Table II, the solution time does not necessarily 

increase with system dimensions. For example, the Romanian 
system solution took only 18 seconds, despite having almost 
7,000 integer variables. 

This behavior is typical of MILP systems. Also typical is 
the difference between finding the optimal solution and 
proving the optimality. For example, although 1.5 hours were 
spent to prove optimality for the Bulgarian system, the actual 
optimal solution had been found after 16 minutes. 

V.  CONCLUSIONS 
This paper presented a methodology for solving the 

transmission-constrained hydrothermal STS problem. The 
basic motivation is to develop a methodology that was flexible 
and robust enough to be used in several mid-sized systems, 
with different mixes of generation and other characteristics. 
The solution approach is to transform the problem 
nonlinearities and convexities into piecewise mixed linear 
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integer (MILP) constraints. As shown in the paper, the MILP 
scheme allows the modeling of complex features for hydro, 
thermal and transmission. Also, by taking advantage of recent 
advances in commercial solver capabilities, the MILP scheme 
was found to be computationally efficient, as illustrated in 
case studies with seven countries in Latin America and 
Europe. 
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