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Hyd rothermal dispatch D The scheduling problem is solved by
‘ SDP or SDDP, where the original

problem is decomposed in one-stage

Minimize present value of expSul-Problems
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Objective function: minimize total cost
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Parameter estimation

» Because it is impossible to

have perfect forecasts of

future inflows, uncertainty

Hydro Furnas (1216 MW)

IS represented through
The PAR(p) model parameters are

scenarios estimated from historical data
= Monte Carlo simulation R
mean: [
based on PAR(p) models > stdev: &
= Linearity of PAR(p) suitable corr: p

for SDDP (convexity)

Historical data




Does the historical record truly represents the physical
_Inflow process?

Synthetic streamflow generation based on these
parameters will reproduce the historical inflow
record properties, which can be different from the
properties of the physical phenomena.
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Unknown bias in the estimator!
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*Sao Pedro (St. Peter) is “responsible” for the rain in Brazil
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Impact on operation policy: negative bias

» Water may be unnecessarily stored and is likely to be spilled in the

future.
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Impact on operation policy

» Hydro reservoirs are depleted faster than needed, resulting in the

dispatch of costly thermal plants in the future.
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Objectives of this work

Assess the impacts of incorporating the uncertainty of the

PAR model parameters in the stochastic hydrothermal

scheduling model.

Develop a methodology to calculate a SDDP policy taking into

account parameter uncertainty




Generation of inflow scenarios with parameter uncertainty
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Impact of parameter uncertainty on operation costs

Standard Deviation

1. Calculate the operating policy
with inflow model parameters from
the historical record

2. Simulate the system operation
with inflows produced by other
sets of parameters
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Mean

Case study for the Brazilian Power
System (~140 GW), 10 year horizon,
200 hydrological scenarios
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Parameter estimation as part of stochastic optimization

Selection of inflow best model

SDDP policy calculation with different inflow models




1. Selection of best inflow model: key idea

Calculate “taylor made” operating policies for each set of
iInflow model parameters m = 1, ..., M; simulate system

operation with inflows produced by all the other parameters

Decision criteria: Prom P P
le nnn Zlm ann ZlM

Expected value: m* = argmin).,, p,, Z,n Zm1 Zmm  Zm
Zmr o Zmem - Zm

Minimax regret: m* = argminMax {Z,,,, — Z,,,,,.}
m 4’1’

Convex combination: m* = argmin [/1 YnPrZmn + (1 —2) ij‘x {Z, 0 — me}]

m

CVaR: m* = argmin|1Y,, v, Zmn + (1 — D)CVaR{Z,,,}]
m




1. Selection of best inflow model: case study

The “taylor made” policies are the

Policies
P1 P2 p3 P P5 best ones, as expected.
o S1 0% 2% 6% 2% 18%
9 [S2 0% 0% 5% 0% 16% o
e
L |s3 6% 8% 0% 2% 20% m* = Expected Value
=
£ |54 4% 6% 2% 0% 23% @
(7s]
S5 18% 16% 18% 21% 0%
o L° .
The “best” inflow model based on = % e -
the policy calculation / simulation -
depends on the decision criteria.
| |
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2. SDDP policy with different inflow models: key idea

Represent all the M alternative inflow models as part of the

SDDP recursion
SDDP with
Classical SDDP parameter uncertainty
ar (Vy, A231)* Py

gt(VllA%+1): blem f ar(Vy, At11)* vy
ne-stage problem for ml s
opening 1 a;(Vy, A1) o

£

State 1 ¢ : .
“t(V1»Ar+1)* b2

a’r(VLA%-lH)* P1
a; (Vl!A?gill)* Pm

)

Ofr(V1:A%+1)

State 2 ¢

State K ¢
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2. SDDP policy with different inflow models: formulation

M PAR(1) models with probabilities {p,,,,m =1, ..., M’}

a. (07, a;) = Min Z Cj z Jir,j T Z Pm [ z “t+1] FCF with state variable a;

Veyr,i = Dy +0g; — (ut,i +<‘5t,i) + Z (ut,n +<‘5t,n) water balance
neEM;
. = g 8S
Z €eri ¥ Z 9ewj = i Z Tton demand balance
[ j n
N0

(at+1 i :uw(t+1),i) A (atl nuw(t) l) = .

= Pﬂ?m 1- [ Pw(), z] X Sté,i vi,l,m stochastic model
W(t+1) i w(t+1) i

ml AP _ AP ml ~P Bender
Apy1 = z Phe+1i X Ve+ri T z Par1i X Ati1,i T Porpr VP, enders cuts
i .




2. SDDP policy with different inflow models: case study

Test system with 1 hydro and 3 thermal plants

12 month study period; 4096 hydrological scenarios

Final Simulation
Clusterl | Cluster2 | Cluster3 | Cluster4 | Cluster5
Q Cluster1 0.0% 0.2% 2.3% 1.2% 2.1%
> | Q; Cluster2 0.6% 0.0% 2.2% 1.2% 2.1%
% Q, Cluster 3 1.1% 0.8% 0.0% 0.5% 0.8%
* Q, Cluster4 34.5% 29.1% 50.8% 0.0% 81.4%
Q; Cluster5 0.9% 1.1% 0.4% 0.4% 0.0%
Qg Parameter Uncertainty 0.6% 0.4% 0.0% 0.2% 0.5%

The policy with parameter uncertainty minimizes both

expected operation cost and maximum regret
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And there are more improvements!

The policy can be refined by using the probability of each

model conditioned to the current inflow value a; ;.
(vt az, C; () = Min ZC,Zg”, +2p [me (% aﬁﬁ”)] inflow cluster as state variable

For each cluster ¢/ there is an associated vector of model
probabilities {p{,, }
The transition probability from cluster £ in stage t to cluster v

in stage t + 1 is p/".
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Conclusions

Parameter uncertainty has a significant impact on system

operating costs

The representation of uncertainty in the operating policy

minimized both expected operation cost and maximum regret

The quality of the proposed policy can be improved by

modeling the inflows as a Markov Chain, with transition

probabilities between each cluster.
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