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Motivation

► Large scale multi-stage stochastic planning problems are in the 

“everyday” routine of energy planning (ISO’s, agents, regulators): 

optimal generation scheduling, expansion planning etc

 Multi-stage characteristic (= time coupling of decisions) comes from storage 

mechanisms (mainly hydro reservoirs) 

► Those problems are successfully solved in real life via Benders 

decomposition-based methods, such as SDDP (Pereira and Pinto, 

1991).
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Motivation

► In centralized systems (e.g. Brazil), the ISOs solve a long-term 

stochastic least cost dispatch problem

 Uncertainty on inflows and production of renewables

► In deregulated markets (e.g. Nordpool), the problem is to determine 

the dispatch schedule that maximizes revenues under uncertainty 

on inflows, production of renewables and spot prices

 Price-taker modeling: Gjelsvik et al. (1999), Fosso et al. (1999) => Hybrid 

SDDP+SDP with Markov chain
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Motivation

► Solving the least cost dispatch problem by SDDP:

 Inflows: historical record is given => scenarios of future inflows are generated 

by Monte Carlo (stochasticity)

 Availabilities of the plants and circuits are given (including modifications over 

time, planned maintenance schedules etc); outage sampling of equipment can 

be represented by Monte Carlo (stochasticity)

 Production of renewables can be represented via scenarios, sampled by Monte 

Carlo (stochasticity)

 Demand forecast is given (deterministic)

 Fuel costs forecast is given (deterministic)
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Motivation

► Usually planners perform what-if analysis w.r.t demand and fuel 

costs forecasts (base case, high, low) => stochasticity not 

considered => resulting scheduling is not prepared for the possible 

variability in those key elements.

► How to incorporate the uncertainty on both demand growth and fuel 

costs?
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SDDP formulation - indices

Indices

► 𝑡 = 1,… , 𝑇 time stages (typically weeks or months)

► 𝜏 = 1,… , Τ intra-stage time blocks (e.g. peak, medium and low demand or 168 

hours in a week)

► 𝑠 = 1,… , 𝑆 scenarios for each stage 𝑡 produced by the stochastic models (typically 

inflows and renewable generation; also loads, equipment availability and fuel costs)

► 𝑙 = 1, … , 𝐿 set of scenarios for stage 𝑡 + 1 conditioned to scenario 𝑠 in stage 𝑡

► 𝑖 = 1,… , 𝐼 storage devices (typically hydro plants; also fuel storage, batteries, 

emission limits and some types of contracts)

► 𝑚 ∈ 𝑀𝑖 set of hydro plants immediately upstream of plant 𝑖

► 𝑗 = 1,… , 𝐽 dispatchable devices (typically, thermal plants; also, some controllable 

renewables and price-responsive demand)

► 𝑛 = 1,… ,𝑁 non-dispatchable devices (typically, wind, solar and biomass)

► 𝓅 = 1,… ,𝒫 number of hyperplanes (Benders cuts) in the future cost function
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SDDP formulation – decision variables

Decision variables for the operation problem in stage 𝑡, scenario 𝑠

► 𝑣𝑡+1,𝑖 stored volume of hydro 𝑖 by the end of stage 𝑡

► 𝑢𝑡,𝑖 turbined volume of hydro 𝑖 stage 𝑡

► 𝓈𝑡,𝑖 spilled volume of hydro 𝑖 in stage 𝑡

► 𝑒𝑡,𝜏,𝑖 energy produced by hydro 𝑖 in block 𝜏, stage 𝑡

► 𝑔𝑡,𝜏,𝑗 energy produced by thermal plant 𝑗 in block 𝜏, stage 𝑡

► 𝛼𝑡+1
𝑙 present value of expected future cost from 𝑡 + 1 to 𝑇 conditioned to 

scenario 𝑙 in 𝑡 + 1

Note: for notational simplicity, we will not include the transmission network 

model in the formulations.
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SDDP formulation – constants

Known values for the operation problem in stage t, scenario s

► ො𝑎𝑡,𝑖
𝑠 lateral inflow to hydro 𝑖 in stage 𝑡, scenario 𝑠 ( ො𝑎𝑡

𝑠 set of inflows for all 

hydro plants)

► ො𝑣𝑡,𝑖
𝑠 stored volume of hydro 𝑖 in the beginning of stage 𝑡, scenario 𝑠 ( ො𝑣𝑡

𝑠 set 

of stored volumes for all hydro plants)

► 𝑣𝑖 maximum storage of hydro 𝑖

► 𝑢𝑖 maximum turbined outflow of hydro 𝑖

► 𝜌𝑖 production coefficient (𝑘𝑊ℎ/𝑚3) of hydro 𝑖

► 𝑔
𝑗

maximum generation of thermal plant 𝑗

► 𝑐𝑗 variable operating cost of thermal plant j

► Ƹ𝑟𝑡,𝜏,𝑛
𝑠 energy produced by renewable plant 𝑛 in stage 𝑡, block 𝜏, scenario 𝑠

► መ𝑑𝑡,𝜏 demand of block 𝜏, stage 𝑡
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SDDP formulation – multipliers

Multipliers (dual variables)

► 𝜋ℎ𝑡,𝑖 multiplier of the storage balance equation of hydro 𝑖

► 𝜋𝑎𝑡,𝑖 multiplier of the conditioned inflow equation of hydro 𝑖
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SDDP formulation – Benders cut coefficients

𝓅th Benders cut coefficients

► ො𝜑ℎ𝑡+1,𝑖
𝓅

coefficient of hydro plant 𝑖’s storage, 𝑣𝑡+1,𝑖

► ො𝜑𝑎𝑡+1,𝑖
𝑝

coefficient of hydro plant 𝑖’s inflow, 𝑎𝑡+1,𝑖
𝑙

► ො𝜑0𝑡+1
𝑝

constant term
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SDDP formulation – obj. function

Objective function (SDDP recursion)

𝛼𝑡 ො𝑣𝑡
𝑠, ො𝑎𝑡

𝑠 = 𝑀𝑖𝑛 ෍

𝑗

𝑐𝑗෍

𝜏

𝑔𝑡,𝜏,𝑗 +
1

𝐿
෍

𝑙

𝛼𝑡+1
𝑙
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SDDP formulation – storage balance

Storage balance for each stage

𝑣𝑡+1,𝑖 = ො𝑣𝑡,𝑖
𝑠 + ො𝑎𝑡,𝑖

𝑠 − 𝑢𝑡,𝑖 +𝓈𝑡,𝑖 + ෍

𝑚∈𝑀𝑖

𝑢𝑡,𝑚 +𝓈𝑡,𝑚 ← 𝜋ℎ𝑡,𝑖

Note: for notational simplicity, we will not represent real-life features of the 

storage balance equations such as evaporation, filtration, water diversion for 

irrigation and city supply, transposition and others.
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SDDP formulation – storage & turb. outflow limits

Storage and turbined outflow limits

𝑣𝑡+1,𝑖 ≤ 𝑣𝑖

𝑢𝑡,𝑖 ≤ 𝑢𝑖

13



14

SDDP formulation – energy balance & limits

Generation and demand balance for each block

𝑒𝑡,𝑖 = 𝜌𝑖𝑢𝑡,𝑖

෍

𝜏

𝑒𝑡,𝜏,𝑖 = 𝑒𝑡,𝑖

𝑒𝑡,𝜏,𝑖 ≤ 𝑒𝑖

𝑔𝑡,𝜏,𝑗 ≤ 𝑔
𝑗

෍

𝑖

𝑒𝑡,𝜏,𝑖 +෍

𝑗

𝑔𝑡,𝜏,𝑗 = መ𝑑𝑡,𝜏 −෍

𝑛

Ƹ𝑟𝑡,𝜏,𝑛
𝑠
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SDDP formulation – inflow model

Conditioned inflow scenarios for t+1

For simplicity of presentation, we show a multivariate 𝐴𝑅(1) model (in practice, SDDP 

uses a multivariate periodic autoregressive model (𝑃𝐴𝑅) with lag up to 6):

𝑎𝑡+1,𝑖
𝑙 − ො𝜇𝑡+1,𝑖

ො𝜎𝑡+1,𝑖
= ෠𝜙𝑡,𝑖 ×

ො𝑎𝑡,𝑖
𝑠 − ො𝜇𝑡,𝑖
ො𝜎𝑡,𝑖

+ 1 − ෠𝜙𝑡,𝑖
2 × መ𝜉𝑡,𝑖

𝑙 ← 𝜋𝑎𝑡,𝑖

Where the parameters Ƹ𝜇𝑡,𝑖, ො𝜎𝑡,𝑖, ෠𝜙𝑡,𝑖 are respectively the mean, standard deviation and 

serial correlation of the lateral inflow to hydro 𝑖 in stage 𝑡. Spatial dependence is 

represented through a correlation matrix in the sampling of the innovation values መ𝜉𝑡,𝑖
𝑙

for all hydro plants.

Note: For clarity of presentation, the stochastic streamflow models are shown explicitly 

here. In the actual SDDP implementation, they are represented implicitly.
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SDDP formulation – FCF

Future cost functions

As it is well known, the FCFs in SDDP are represented by a set 

of hyperplanes:

𝛼𝑡+1
𝑙 ≥෍

𝑖

ො𝜑ℎ𝑡+1,𝑖
𝓅

× 𝑣𝑡+1,𝑖 +෍

𝑖

ො𝜑𝑎𝑡+1,𝑖
𝓅

× 𝑎𝑡+1,𝑖
𝑙 + ො𝜑0𝑡+1

𝓅

∀𝓅 = 1,… ,𝒫; 𝑙 = 1,… , 𝐿
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SDDP – backward recursion

Backward recursion step

► After each one-stage dispatch problem is solved, we can generate a 

Benders cut to improve the future cost function approximation of the 

previous stage. 

► Assuming that the FCF for the previous stage already has 𝒫 hyperplanes, 

the Benders cut will correspond to the (𝒫 + 1)𝑡ℎ FCF constraint:

𝛼𝑡
𝑙 ≥෍

𝑖

ො𝜑ℎ𝑡,𝑖
𝒫+1 × 𝑣𝑡,𝑖 +෍

𝑖

ො𝜑𝑎𝑡,𝑖
𝒫+1 × 𝑎𝑡,𝑖

𝑙 + ො𝜑0𝑡
𝒫+1

17



18

SDDP – backward recursion

𝛼𝑡
𝑙 ≥෍

𝑖

ො𝜑ℎ𝑡,𝑖
𝒫+1 × 𝑣𝑡,𝑖 +෍

𝑖

ො𝜑𝑎𝑡,𝑖
𝒫+1 × 𝑎𝑡,𝑖

𝑙 + ො𝜑0𝑡
𝒫+1

The Benders cut coefficients ො𝜑ℎ𝑡,𝑖
𝒫+1, ො𝜑𝑎𝑡,𝑖

𝒫+1 and ො𝜑0𝑡
𝒫+1 are calculated from a linear 

expansion of the optimal solution 𝛼𝑡
∗ of the one-stage dispatch problem: 

𝛼𝑡 𝑣𝑡, 𝑎𝑡 ≈ 𝛼𝑡
∗ +෍

𝑖

𝜕𝛼𝑡
𝜕𝑣𝑡,𝑖

× 𝑣𝑡,𝑖 − ො𝑣𝑡,𝑖
𝑠 +෍

𝑖

𝜕𝛼𝑡
𝜕𝑎𝑡,𝑖

× 𝑎𝑡,𝑖 − ො𝑎𝑡,𝑖
𝑠

ො𝜑ℎ𝑡,𝑖
𝒫+1 = Τ𝜕𝛼𝑡 𝜕𝑣𝑡,𝑖, which is the simplex multiplier 𝜋ℎ𝑡,𝑖.

ො𝜑𝑎𝑡,𝑖
𝒫+1 = Τ𝜕𝛼𝑡 𝜕𝑎𝑡,𝑖, calculated as: 𝜋ℎ𝑡,𝑖 + ൗ෠𝜙𝑡,𝑖 ො𝜎𝑡,𝑖 × 𝜋𝑎𝑡,𝑖.

The constant term is obtained by adding all the constants of the linear expansion:

ො𝜑0𝑡
𝒫+1 = 𝛼𝑡

∗ −෍

𝑖

ො𝜑ℎ𝑡,𝑖
𝒫+1 ො𝑣𝑡,𝑖

𝑠 −෍

𝑖

ො𝜑𝑎𝑡,𝑖
𝒫+1 ො𝑎𝑡,𝑖

𝑠
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SDDP – forward step

Upper bound calculation

In stage 𝑡, scenario 𝑠 of the forward simulation step, we calculate 

the immediate operation cost associated to the optimal solution 

(indicated by the superscript “*”).

𝑧𝑡
𝑠 =෍

𝑗

𝑐𝑗෍

𝜏

𝑔𝑡,𝜏,𝑗
∗

As in the traditional SDDP formulation, the upper bound is 

calculated as:

𝑧 =
1

𝑆
෍

𝑡

෍

𝑠

𝑧𝑡
𝑠
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SDDP – SDDP – Inflow scenario for stage 𝒕+𝟏

Conditional scenario (backward scenario)

We also calculate in the forward simulation step the inflow scenario vector for 

the next stage 𝑡 + 1: ො𝑎𝑡+1,𝑖
𝑠 , 𝑖 = 1, … , 𝐼 . This is done by sampling from the 

expression for the conditioned inflows:

𝑎𝑡+1,𝑖
𝑙 − Ƹ𝜇𝑡+1,𝑖

ො𝜎𝑡+1,𝑖
= ෠𝜙𝑡,𝑖 ×

ො𝑎𝑡,𝑖
𝑠 − Ƹ𝜇𝑡,𝑖
ො𝜎𝑡,𝑖

+ 1 − ෠𝜙𝑡,𝑖
2 × 𝜉𝑡,𝑖

𝑙

∀𝑙 = 1,… , 𝐿; ∀𝑖 = 1,… , 𝐼
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SDDP – Inflow scenario for stage 𝒕+𝟏

Forward scenario

Basically, Ƹ𝑠 is randomly sampled from the set {1, … , 𝐿}, and the inflows 

ො𝑎𝑡+1,𝑖
𝑠 , 𝑖 = 1,… , 𝐼 are calculated for the corresponding innovation vector 

መ𝜉𝑡,𝑖
Ƹ𝑠 , 𝑖 = 1,… , 𝐼 .

𝑎𝑡+1,𝑖
𝑠 − Ƹ𝜇𝑡+1,𝑖

ො𝜎𝑡+1,𝑖
= 𝜙𝑡,𝑖 ×

ො𝑎𝑡,𝑖
𝑠 − Ƹ𝜇𝑡,𝑖
ො𝜎𝑡,𝑖

+ 1 − ෠𝜙𝑡,𝑖
2 × መ𝜉𝑡,𝑖

Ƹ𝑠 ∀𝑖 = 1,… , 𝐼

We have two sampling possibilities: either we pre calculate 𝑎𝑡,𝑖 for all 𝑡 before 

even starting the SDDP recursion or we repeat the above described 

procedure in each iteration (re-sampling) so that we have higher probability of 

generating new cuts
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Markov chains

► The Markov chain scheme allows the representation of 

stochastic processes that are not well represented by 

autoregressive models, such as annual load growth rates, as 

well as uncertainties in coefficients of the objective function, 

such as the operating costs of thermal plants (which result 

from uncertainties in fuel costs) and spot prices.
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A few comments on the convexity of the FCF

The function:
𝑓 𝑏, 𝑐 = 𝑀𝑖𝑛 𝑐𝑥 = 𝑀𝑎𝑥 𝜋𝑏

𝑠. 𝑡𝑜 𝑠. 𝑡𝑜
𝐴𝑥 ≥ 𝑏 𝜋𝐴 ≤ 𝑐

► For a fixed 𝑐, 𝑓 𝑏, 𝑐 is convex and can be piecewise-linearly 
approximated on 𝑏.

► For a fixed 𝑏, 𝑓 𝑏, 𝑐 is concave and can be piecewise-linearly 
approximated on 𝑐.

► But as a joint function of 𝑏 and 𝑐, 𝑓 𝑏, 𝑐 is neither convex nor 
concave (is saddle-shaped). 
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A few comments on the convexity of the FCF
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A few comments on the convexity of the FCF

25
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Back to Markov chains

► The Markov chain is represented by 𝑘 = 1,… , 𝐾 clusters 

(states) (for notational simplicity, we assume that 𝐾 is the 

same in all stages).

26
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Back to Markov chains

► The Markov chain transition probability from state 𝑘 in stage 𝑡

to state 𝑚 in stage 𝑡 + 1 is represented by 𝑝𝑡
𝑘𝑚.
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Markov chains

► Each cluster 𝑘 contains 𝓃 = 1,… . ,𝒩𝑡
𝑘 sets of values, where 

each set may contain a vector of operating costs for the 

thermal plants; or a vector of spot prices for each load block; 

or an annual load growth rate.

► With the Markov scheme we have 𝐾 separate piecewise linear 

future cost functions (FCFs) in each stage, represented by 

𝛼𝑡
𝑘 ො𝑣𝑡

𝑠, ො𝑎𝑡
𝑠 , 𝑘 = 1,… , 𝐾. This means that, for each scenario 𝑠

and stage 𝑡, in addition to the inflows ො𝑎𝑡
𝑠, we need to sample: 

(i) one of the states of the Markov chain, represented by ෠𝑘𝑡
𝑠; 

and (ii)one of the 𝒩𝑡
𝑘 values (or vector of values) contained in 

that cluster.
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Markov chains

► We also need to sample Markov states for each of the 𝐿

conditioned inflow vectors for stage 𝑡 + 1, 𝑎𝑡+1
𝑙 , 𝑙 = 1,… , 𝐿 . 

This is done by sampling 𝐿 times from the transition 

probabilities from (the already sampled) state ෠𝑘𝑡
𝑠 to states in 

stage 𝑡 + 1: 𝑝𝑡
෠𝑘𝑠𝑚, 𝑚 = 1,… , 𝐾 .
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Uncertainty on fuel costs

► In this case, each cluster 𝑘 in stage 𝑡 contains 𝒩𝑡
𝑘 vectors of 

operating costs for the 𝐽 thermal plants: 𝑐𝑡𝑗
𝑘𝓃, 𝑗 = 1,… , 𝐽 , 𝓃= 

1, …, 𝒩𝑡
𝑘 . As previously mentioned, one of those vectors, 

represented as 𝑐𝑡𝑗
𝑘𝑠, will be sampled and used in the dispatch 

problem.
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Uncertainty on fuel costs

► In this case, each cluster 𝑘 in stage 𝑡 contains 𝒩𝑡
𝑘 vectors of 

operating costs for the 𝐽 thermal plants: 𝑐𝑡𝑗
𝑘𝓃, 𝑗 = 1,… , 𝐽 , 𝓃= 

1, …, 𝒩𝑡
𝑘 . As previously mentioned, one of those vectors, 

represented as 𝑐𝑡𝑗
𝑘𝑠, will be sampled and used in the dispatch 

problem.

𝛼𝑡
෠𝑘𝑠 ො𝑣𝑡

𝑠, ො𝑎𝑡
𝑠 = 𝑀𝑖𝑛 ෍

𝑗

𝑐𝑡𝑗
𝑘𝑠෍

𝜏

𝑔𝑡,𝜏,𝑗 +
1

𝐿
෍

𝑙

𝛼𝑡+1
𝑚𝑙
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Uncertainty on fuel costs

► In order to understand the FCF formulation in this case, we should recall 

that in the basic SDDP formulation there is only one future cost function 

whose value is calculated 𝐿 times, each with a different 𝑎𝑡+1
𝑙 , that is, 

𝛼𝑡+1 𝑣𝑡+1, 𝑎𝑡+1
𝑙 , 𝑙 = 1,… , 𝐿.

► In the Markov formulation, however, we have 𝐾 different FCFs for stage 

𝑡 + 1, each corresponding to one of the clusters in the Markov matrix. As 

mentioned, we sampled one of the clusters – and, thus, one of the FCFs -

for each of the 𝐿 conditioned inflow values. The sampled cluster for 

conditioned inflow 𝑙 is represented as 𝑚(𝑙). For this reason, the FCF is 

given by:

𝛼𝑡+1
𝑚𝑙 ≥෍

𝑖

ො𝜑ℎ𝑡+1,𝑖
𝑚𝑙𝓅 × 𝑣𝑡+1,𝑖 +෍

𝑖

ො𝜑𝑎𝑡+1,𝑖
𝑚𝑙𝓅 × 𝑎𝑡+1,𝑖

𝑙 + ො𝜑0𝑡+1
𝑚𝑙𝓅 ∀𝓅 = 1,… ,𝒫𝑡

𝑚𝑙 ; 𝑙

= 1,… , 𝐿
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Uncertainty on fuel costs

► Note that the SDDP problem size with the Markov model is 

the same as the basic formulation; the difference is on the 

values of the Benders cut coefficients.

► As a consequence, it is reasonable to expect that a Markov 

chain representation will not have a significant impact on 

SDDP’s execution time. 

 The situation is similar to the representation of higher-order 

autoregressive inflow models, which does not affect running times.
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Uncertainty on fuel costs

Benders cut calculation for the previous stage (FCF 

improvement):

► The Benders cut calculation is similar to the basic formulation. 

We just have to remember that the cut will be added to only 

one of the 𝐾 FCFs of stage 𝑡, corresponding to the sampled 

cluster ෠𝑘𝑡
𝑠.
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Uncertainty on annual load growth rates

► In this case, the Markov chain transition for December to 

January (or last week to the first week) of each year contains 

possible values of load growth rates 𝜁𝑡
𝑘𝓃 , 𝓃 = 1,… ,𝒩𝑡

𝑘 for 

each state (for example, “low”, “medium” or “high” growth). 

 For the other stages in the year, the clusters contain the value 1.0, i.e. no 

growth. 

 Also, the transition probabilities in the Markov chains from January to February, 

February to March etc. until November to December have “1.0” in the diagonal 

and zero elsewhere, indicating that there are no Markov transitions within the 

year; only the Markov chain from December to the following January have 

transition probabilities.
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Uncertainty on annual load growth rates

► In the beginning of each year, the average annual load for that 

year is obtained by multiplying the previous year’s average 

load by one of the load growth rates in the sampled cluster.

 This means that the average annual load becomes a state variable. 

► The load 𝑑𝑡,𝜏 in each stage 𝑡 and block 𝜏 is obtained by 

multiplying the average annual load by a disaggregation factor

෡Δ𝑡,𝜏. (Note that, by construction, σ𝜏
෡Δ𝑡,𝜏 = 1. )
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Uncertainty on annual load growth rates

The dispatch problem is formulated as:

𝛼𝑡
෠𝑘𝑠 ො𝑣𝑡

𝑠, ො𝑎𝑡
𝑠, ҧ𝑑𝑡

𝑠 = 𝑀𝑖𝑛 ෍

𝑗

𝑐𝑗෍

𝜏

𝑔𝑡,𝜏,𝑗 +
1

𝐿
෍

𝑙

𝛼𝑡+1
𝑚𝑙

⋯

መ𝑑𝑡,𝜏
𝑠 = ෡Δ𝑡,𝜏 × ҧ𝑑𝑡

𝑠 ← 𝜋 ҧ𝑑𝑡,𝜏

෍

𝑖

𝑒𝑡,𝜏,𝑖 +෍

𝑗

𝑔𝑡,𝜏,𝑗 = መ𝑑𝑡,𝜏
𝑠 −෍

𝑛

Ƹ𝑟𝑡,𝜏,𝑛
𝑠

𝑎𝑡+1,𝑖
𝑙 − ො𝜇𝑡+1,𝑖

ො𝜎𝑡+1,𝑖
= ෠𝜙𝑡,𝑖

1 ×
ො𝑎𝑡,𝑖
𝑠 − ො𝜇𝑡,𝑖
ො𝜎𝑡,𝑖

+ ෠𝜙𝑡,𝑖
2 × መ𝜉𝑡,𝑖

𝑙 ← 𝜋𝑎𝑡,𝑖

ҧ𝑑𝑡+1
𝑠 = መ𝜁𝑡

෠𝑘𝑠𝓃 × ҧ𝑑𝑡
𝑠 ← 𝜋 ҧ𝑑𝑡

𝛼𝑡+1
𝑚𝑙 ≥෍

𝑖

ො𝜑ℎ𝑡+1,𝑖
𝑚𝑙𝓅 × 𝑣𝑡+1,𝑖 +෍

𝑖

ො𝜑𝑎𝑡+1,𝑖
𝑚𝑙𝓅 × 𝑎𝑡+1,𝑖

𝑙 + ො𝜑 ҧ𝑑𝑡+1

𝑚𝑙𝓅 × ҧ𝑑𝑡+1
𝑠 + ො𝜑0𝑡+1

𝑚𝑙𝓅 ∀𝓅, 𝑙
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Uncertainty on annual load growth rates

► As seen, መ𝜁𝑡
෠𝑘𝑠𝓃 is equal to 1.0 for all stages, except December 

(or the last week) of each year. 

► Finally, the Benders cut coefficient ො𝜑 ҧ𝑑𝑡

𝑚𝑙𝒫+1 for the previous 

stage is given by:

ො𝜑 ҧ𝑑𝑡

𝑚𝑙𝒫+1 = መ𝜁𝑡
෠𝑘𝑠𝓃 × 𝜋 ҧ𝑑𝑡 +෍

𝜏

෡Δ𝑡,𝜏 × 𝜋 ҧ𝑑𝑡,𝜏
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