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Introduction
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► The expansion planning problem (EPP) of power systems is 

originated from the necessary changes in the system due to 

energy load growth during the passing of time

► Decision: when and in which projects to invest?

► Typical trade-off:

Cost x Reliability

Minimize

Investment + Operation

Cost

Guarantee

Minimum Quality of Supply



Problem description
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► General model

where:

vector of investment decisions

investment cost function

operation cost function

hydro inflow uncertainty

reliability measure

operating state uncertainty
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Problem description
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► Investment problem

▪ Objective: selection of the best set of generators, similar to the portfolio 

selection problem

► Operation problem 

▪ Also known as optimal hydrothermal scheduling problem

▪ Objective: given an fixed investment decision, determine the least cost 

dispatch to supply the energy demand in a specified horizon

▪ Hydro inflows uncertainty: multi-stage stochastic optimization problem



Problem description
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► Reliability problem

▪ Objective : evaluate system’s adequacy in probabilistic terms

▪ For generating systems, “failure” is commonly measured by the 

system’s lack of generation capacity:

R = max(D − G, 0)

where

R load shedding

D system’s demand

G system’s total capacity



Reliability analysis
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► Generator operating state can be either:

0 = failure, with probability 

1 = operative, with probability

► System state is represented by vector

► Total system capacity is defined as 

► Finite supported distribution

▪ Space of states:      (combination of all generators states)

▪ Probability : 

▪ System capacity:

▪ Load shedding:
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Risk measures

► Based on the distribution function of load shedding R

► Typical measures: LOLP & EPNS

► Risk measures: VaR & CVaR
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Risk measures

► LOLP X VaR

► VaR allows us to capture more critical events for the system

► VaR5% answers the question “what is the maximum possible load 

shedding considering the 95% best states”? 

► Inducing a more balanced expansion

Very used in finances for this purpose
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Risk measures

► VaR X CVaR

► VaR is "blind" to the severity of the events that lead to load 

shedding, that is, a 1% load curtailment has the same weight in the 

reliability evaluation as a 10% load curtailment.

► In order to capture both the probability and severity of the events we 

use CVaR



Risk measures – critical events CVaR X EPNS
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Risk measures – critical events CVaR X EPNS

12



Evaluation of risk measures
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► The analytical evaluation of the risk measure needs the 

evaluation of system states, but…

► Number of system states:

▪ 1 generator |S| = 21 = 2 states

▪ 2 generators |S| = 22 = 4 states

▪ 30 generators |S| = 230 ≈ 109 states (1 billion)

► Huge problem!



Hierarchical approach
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► Step 1: Solve economic planning problem (i.e., forget the 

reliability requirements) and find a investment plan “x”

▪ If “x” meets the reliability criterion → solution found!

▪ If not, go to step 2

► Step 2: complement the plan “x” with new reinforcements until 

reliability criterion is met



Integrated approach
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► How to consider reliability constraints in EPP?

▪ The representation of the risk measure the in expansion planning 

problem would need the representation of at least one 

constraint/variable for each system state 

→ computationally infeasible

► Benders’ decomposition



Decomposition scheme

► Investment problem approximation

▪ Solved by MIP techniques (B&B + Heuristics from 

commercial solver)

►Operation subproblem

▪ Solved using SDDP (Stochastic Dual Dynamic 

Programming)

►Reliability subproblem

▪ Solved by Monte Carlo sampling
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Decomposition scheme - SDDP

►Operation subproblem

▪ Solved using SDDP: iterative construct value 

functions
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Decomposition scheme - SDDP

►Operation subproblem

▪ Solved using SDDP: parallelizable!
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Decomposition scheme

►Reliability subproblem

▪ “Analytical” single area model:

Fast Fourier Tranforms for capacity PDF

Kernel Densisty estimation for load and renewables PDF

▪ Multi area model: 

Monte Carlo sampling + MaxFlow Theorem

▪ Complete DC model:

Monte Carlo sampling + LP solver (DCOPF)
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Decomposition scheme

►Reliability subproblem: recent advances

► Hybrid Monte Carlo Markov Chain (MCMC) and Cross 

Entropy (CE) scheme for variance reduction in the reliability 

evaluation module

► Co-optimization of probabilistic dynamic reserves (important 

for renewable penetration)
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Decomposition scheme - CVaR

►Reliability subproblem

▪ Remark 1:

• EPNS e CVaR can be incorporated in the decomposition scheme

• LOLP and VaR are not convex risk measures [3] and, therefore, cannot be 

used in decomposition schemes

▪ Remark 2:

• Sensitivity analysis can be carried out with EPNS e CVaR but not with 

LOLP and VaR due to their nonconvex characteristics
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Decomposition scheme
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Decomposition scheme

►Master problem (Investment problem approximation)
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Decomposition scheme - example
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Decomposition scheme - example
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Decomposition scheme - example
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Decomposition scheme - example
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 7-year horizon (monthly), 83 generators

 Results

Case study 1: Bolivia
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App.
Investment 

cost
(M$)

Operation 
cost
(M$)

Total

Cost

(M$)

#Infeas

.
EPNS

No
Reliab.

98.42 146.66 245.08 22

Hier. 117.80 145.02 262.82 0

Integ. 100.06 152.17 252.23 0



Case study 2: Morocco-Spain expansion plan
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Planning horizon: 

15 years

Yearly investment 

decisions

780 weekly 

operation stages 
(21 load blocks in 

each stage)



Case study 2: results
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Conclusions

► Expansion planning trade-off

▪ Cost: larger projects, return to scale

▪ Reliability: smaller projects, diversification

► The integrated approach revealed to be important

▪ The “economic planning” could not be sufficient to guarantee the 

reliability criterion

▪ The hierarchical approach does not lead to the optimum solution

► The application of Benders decomposition allowed the 

solution of the problem

▪ specialized algorithms for each subproblem could be exploited
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