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Introduction

The expansion planning problem (EPP) of power systems is
originated from the necessary changes in the system due to

energy load growth during the passing of time
Decision: when and in which projects to invest?

Typical trade-off:

Cost X Reliability

Minimize Guarantee

Investment + Operation m Minimum Quality of Supply
Cost




Problem description

General model
Min I1(X) + O(Xx, w)
s.t. R(x,&) <R

where;:

X vector of investment decisions

| (X) investment cost function

O(X, W) operation cost function

W hydro inflow uncertainty
R(X, &) reliability measure

,/: operating state uncertainty




Problem description

» Investment problem

= Objective: selection of the best set of generators, similar to the portfolio

selection problem

» Operation problem

= Also known as optimal hydrothermal scheduling problem

= Objective: given an fixed investment decision, determine the least cost

dispatch to supply the energy demand in a specified horizon

= Hydro inflows uncertainty: multi-stage stochastic optimization problem




Problem description

» Reliablility problem
= Objective : evaluate system’s adequacy in probabilistic terms

= For generating systems, “failure” is commonly measured by the

system’s lack of generation capacity:

R =max(D - G, 0)

where
R load shedding

D system’s demand

G system’s total capacity




Reliability analysis

» Generator operating state can be either:
Saj {O = failure, with probability p;
1 = operative, with probability (1— pj)
» System state is represented by vector ¢ = [51 E, e §J]
. . . Py J —_
» Total system capacity is defined as G = ijlfj g
» Finite supported distribution

= Space of states: S (combination of all generators stateg,) z

- Probability : p, = P(&,)

R>0
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= System capacity: G, i
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= Load shedding: R, = max(D —GS,O) |
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Risk measures

» Based on the distribution function of load shedding R

» Typical measures: LOLP & EPNS
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» Risk measures: VaR & CVaR,
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Risk measures

» LOLP X VaRa
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VaR,
» VaR, allows us to capture more critical events for the system

» VaRs»x answers the question “what is the maximum possible load
shedding considering the 95% best states™?

» Inducing a more balanced expansion
Very used in finances for this purpose
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Risk measures

» VaR, X CVaR,
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VaR, CVaR,
» VaR is "blind" to the severity of the events that lead to load

shedding, that is, a 1% load curtailment has the same weight in the
reliability evaluation as a 10% load curtailment.

» In order to capture both the probability and severity of the events we
use CVaR
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Risk measures — critical events CVaR X EPNS

Power
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Risk measures — critical events CVaR X EPNS
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Evaluation of risk measures

» The analytical evaluation of the risk measure needs the

evaluation of system states, but...

» Number of system states:

= 1 generator S| =21 = 2 states

= 2 generators S| = 22 = 4 states

= 30 generators S| = 230 = 109 states (1 billion)

» Huge problem!
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Hierarchical approach

» Step 1: Solve economic planning problem (i.e., forget the
reliability requirements) and find a investment plan “x”
Minimize I(x)+ O(x)
subject to &} <
re X

= If “x” meets the reliability criterion = solution found!

= |f not, go to step 2

» Step 2: complement the plan “x” with new reinforcements until

reliability criterion is met




Integrated approach

» How to consider reliability constraints in EPP?

= The representation of the risk measure the in expansion planning
problem would need the representation of at least one
constraint/variable for each system state

- computationally infeasible

» Benders’ decomposition




Decomposition scheme

» Investment problem approximation

= Solved by MIP techniques (B&B + Heuristics from

commercial solver)
» Operation subproblem

= Solved using SDDP (Stochastic Dual Dynamic

Programming)

» Reliability subproblem

= Solved by Monte Carlo sampling
PSR




Decomposition scheme - SDDP

Operation subproblem

Solved using SDDP: iterative construct value

functions




Decomposition scheme - SDDP

» Operation subproblem

= Solved using SDDP: parallelizable!




Decomposition scheme

» Reliability subproblem

= “Analytical” single area model:
Fast Fourier Tranforms for capacity PDF

Kernel Densisty estimation for load and renewables PDF

= Multi area model:

Monte Carlo sampling + MaxFlow Theorem

= Complete DC model:

Monte Carlo sampling + LP solver (DCOPF)




Decomposition scheme

» Reliability subproblem: recent advances

» Hybrid Monte Carlo Markov Chain (MCMC) and Cross
Entropy (CE) scheme for variance reduction in the reliability

evaluation module

» Co-optimization of probabilistic dynamic reserves (important

for renewable penetration)




Decomposition scheme - CVaR

» Reliability subproblem

= Remark 1:

- EPNS e CVaR_ can be incorporated in the decomposition scheme
- LOLP and VaR, are not convex risk measures [3] and, therefore, cannot be

used in decomposition schemes

= Remark 2:

- Sensitivity analysis can be carried out with EPNS e CVaRa but not with

LOLP and VaRa due to their nonconvex characteristics




Decomposition scheme

Investment

Optimality
Investment Cut Operation

Module Module

Multistage Mixed Integer (MIP) Trial Plan X I Multistage stochastic
optimization optimization

Cost I(X)

_ Y
Operation
[ Cost O(X) 9

p|aln x  Feasibility
* Cut
I
Supply
Reliability

Evaluation

Monte Carlo
based OPF

Y

(Min I(X) + O(XD




Decomposition scheme

» Master problem (Investment problem approximation)

Minimize E ciTi + o

JEGE
, | ; 5(')(:1??*') _
subjectto o > O(x") + Z Ol (zj —x5) i €A
jEG® J
; OR(x") ; _ .
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Decomposition scheme - example

I (X) +O(Xx,w)

R(X,¢)




Decomposition scheme - example
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R(x,¢)
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Decomposition scheme - example

I (X)+O(Xx, w)
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Case study 1: Bolivia

o 7-year horizon (monthly), 83 generators
o Results

Investment | Operation Total #infeas
App. cost cost Cost EPNS
(MS) (MS) (M$) :
No
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Reliab. . n i |‘
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Case study 2: Morocco-Spain expansion plan
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Investment

Case StUdy 2: results [ o
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Conclusions

» EXxpansion planning trade-off

= Cost: larger projects, return to scale

= Reliability: smaller projects, diversification
» The integrated approach revealed to be important

= The “economic planning” could not be sufficient to guarantee the

reliability criterion

= The hierarchical approach does not lead to the optimum solution

» The application of Benders decomposition allowed the
solution of the problem

= specialized algorithms for each subproblem could be exploited
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