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Motivation

► Hydrothermal generation scheduling

 Objective: optimize the use of existing resources (hydro, natural gas, 

renewables etc.) over a planning horizon

► Characteristics:

 Time-coupled: it is possible to store water in the reservoirs for future

 Strong stochastic components

► Trade-off: minimum cost x supply reliability

 Minimum cost operation  least reliable

 Most reliable operation  most expensive

4



Stochastic optimization model

Stochastic parameters

 Hydro inflows and renewable generation (wind, solar, biomass etc.)

 Multivariate stochastic model (PAR(p))

 Inflows: macroclimatic events (El Niño), snowmelt and others

 Spatial correlation of wind, solar and hydro

 External renewable models can be used to produce scenarios

 Uncertainty on fuel costs

 Markov chains (hybrid SDDP/SDP model)

 Wholesale energy market prices

 Markov chains

 Load variability and equipment outages

 Monte Carlo sampling

Solution algorithm: stochastic dual dynamic programming (SDDP)

 Avoids “curse of dimensionality” of traditional SDP  handles large systems

 Suitable for distributed processing
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SDDP characteristics [Pereira & Pinto, 1991]

Iterative procedure 

1. forward simulation: finds new states and provides upper bound

2. backward recursion: updates FCFs and provides lower bound

3. convergence check (LB in UB confidence interval)

Distributed processing

The one-stage subproblems in both forward and backward steps can 

be solved simultaneously, which allows the application of distributed 

processing

SDDP has been running on computer networks since 2001; from 2006, 

in a cloud system with AWS

We currently have 500 virtual servers with 16 CPUs and 900 GPUs each
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One-stage problem (simplified)

 Objective function (min immediate cost + future cost)

𝛼𝑡 𝑣𝑡,𝑖 = 𝑀𝑖𝑛 σ𝜏σ𝑗 𝑐𝑗𝑔𝑡𝜏𝑗 + σ𝜏 𝛿𝑟𝑡𝜏 + 𝛼𝑡+1( 𝑣𝑡+1,𝑖 )
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 Future cost function (FCF)

𝛼𝑡+1 ≥ σ𝑖 𝜋𝑣𝑖
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Stochastic optimization with risk aversion
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 Economic cost of failure + “risk premium”
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Three approaches to risk aversion

1. Penalize supply failures

 Economic cost of failure + “risk premium”

2. Ensure feasibility for a set of critical scenarios

 Hybrid robust/stochastic optimization

3. Give more weight to higher costs in the SDDP recursion

 Equivalent to skewing the conditioned inflow distribution in SDDP’s 

backward step
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Approach #1: penalize supply failures
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Approach #1: penalize supply failures
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Challenge: reliability criterion

1. Expected energy not supplied 

(EENS) does not reflect risk of 

failure

2. On the other hand, risk of 

failure does not capture severity

Min 𝐸 𝑧

𝑅 ≤ 𝜂 𝜇

Max
𝜇

Min𝐸 𝑧 + 𝜇(𝑅 − 𝜂)
Lagrangian relaxation



Proposed criterion: CVaR of ENS

► Lagrangian relaxation ensures problem separability

Max
𝜇

Min𝐸[𝑧] + 𝜇 CVaR𝛼[𝑟] − 𝜂

21



Proposed criterion: CVaR of ENS
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One-stage problem (simplified)

 Objective function (min immediate cost + future cost)

𝛼𝑡 𝑣𝑡,𝑖 , 𝑏 = 𝑀𝑖𝑛 σ𝜏σ𝑗 𝑐𝑗𝑔𝑡𝜏𝑗 + σ𝜏 𝛿𝑟𝑡𝜏 +
𝜇

𝛼
𝑦𝑡 + 𝛼𝑡+1( 𝑣𝑡+1,𝑖 )

 Storage balance

𝑣𝑡+1,𝑖 = 𝑣𝑡,𝑖 + 𝑎𝑡,𝑖 − 𝑢𝑡,𝑖 ∀𝑖 = 1,… , 𝐼

 Power balance 

σ𝜏 σ𝑗 𝑔𝑡𝜏𝑗 + σ𝑖 𝑒𝑡𝜏𝑖 + 𝑟𝑡 = መ𝑑𝑡𝜏 −σ𝑛 Ƹ𝑟𝑡𝜏𝑛 ∀𝜏 = 1,… , Τ

 Second deficit segment

yt ≥ σ𝜏 𝑟𝑡𝜏 − 𝑏

 Future cost function (FCF)

𝛼𝑡+1 ≥ σ𝑖 𝜋𝑣𝑖
𝑘 𝑣𝑡+1,𝑖 +σ𝑖 𝜋𝑎𝑖

𝑘 𝑎𝑡+1,𝑖 +𝛿
𝑘 ∀𝑘 = 1,… , 𝐾
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Economic interpretation for CVaR of ENS

► For example, the expected energy not supplied in the 1% quantile should 

not exceed 5% of load

26

$

𝑟

Economic cost

slope = 𝛿



Economic interpretation for CVaR of ENS

► For example, the expected energy not supplied in the 1% quantile should 

not exceed 5% of load

27

Risk premium

function

Associated to

CVaR

shift = 𝒃

Slope = p* = 
𝝁

𝜶

$

𝑟

Economic cost

slope = 𝛿

𝑏 𝑦



Economic interpretation for CVaR of ENS

► For example, the expected energy not supplied in the 1% quantile should 

not exceed 5% of load
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SDDP with CVaR on supply reliability
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Approach #2: protection against critical scenarios
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This corresponds to adding 

feasibility cuts in the multireservoir

SDDP recursion 



Risk Aversion Surface (SAR)

34

CAR and (partially) SAR were 

used for several years as a risk 

aversion criterion in Brazil’s 

operation

𝑣 

𝑣1

 (𝑣1, 𝑣 )  
=   

 (𝑣1, 𝑣 )  
   

Risk Aversion Surface (SAR)



Approach #3: CVaR on operation cost

► New objective function of the one-stage problem

𝑀𝑖𝑛 𝜆𝐸 𝑧 + 1 − 𝜆 𝐶𝑉𝑎𝑅𝑞(𝑧)
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Approach #3: CVaR on operation cost

► New objective function of the one-stage problem

𝑀𝑖𝑛 𝜆𝐸 𝑧 + 1 − 𝜆 𝐶𝑉𝑎𝑅𝑞(𝑧)

► Nested form

► The CVaR-cost criterion is easy to implement in SDDP, 

because it is equivalent to changing the weights of the 

conditioned inflow scenarios in the backward recursion

 This interpretation also allows a simple and exact calculation of the 

upper bound in the SDDP algorithm with CVaR, which had been a 

concern for some time   
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Case study: Brazil

► Characteristics:

 157 hydro plants / reservoirs

 119 thermal plants

 5 nodes

► Horizon (static):

 5 years + 5 years buffer

 monthly stages

► Uncertainty representation

 30 branching backward

 simulation 1,200 forward scenarios
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Approach #1: penalize CVaR on supply failures

► CVaR constraint: EENS @ 4% quantile ≤ 5% load

► Economic cost of deficit: 3,100 R$/MWh
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Lagrangian function
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Lagrangian function
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Accumulated supply failure distribution
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Stored energy (years 1 and 2)
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Approach #2: hybrid robust/stochastic optimization
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► Stored energy
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Approach #3: CVaR on objective function

► Operating costs
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Comparison of risk aversion approaches

48

Approach

Attribute
CVaR-EENS SAR CVaR-cost

Easy to understand? Yes Yes Sort of…

Represents risk aversion directly? Yes Yes No

Easy to calibrate? Medium Yes No

Additional computational effort

with respect to standard SDDP

High to

calculate 

segment, low 

after it

Medium Low



Conclusions

► Policy makers want to be protected against unlikely events with bad 

consequences

ISO's concern is often the “risk” of supply failures

The risk level may not depend on other costs (for example, fuel costs)

Expectation can be a “naive” (risk neutral) measure:

For example, it cannot distinguish between two energy shortages of 100 MW 

or one of 200 MW

CVaR is a good (risk averse) alternative:

Sensitive to the tail of the distribution, representing a protection against 

extreme scenarios

Coherent risk measure

Convex: can be incorporated in decomposition schemes like SDDP
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Conclusions - Risk aversion approaches

► Approach #1: minimization of E[.] considering a CVaR

constraint

 CVaR constraint is directly applied over the supply failure variable to 

ensure the desired risk level

 The definition of the acceptable risk level is a pre-defined criteria 

 Implicit cost function for supply failures is a result

53



Conclusions - Risk aversion approaches

► Approach #1: minimization of E[.] considering a CVaR

constraint

 CVaR constraint is directly applied over the supply failure variable to 

ensure the desired risk level

 The definition of the acceptable risk level is a pre-defined criteria 

 Implicit cost function for supply failures is a result

► Approach #2: aversion curve surface

 Constraints directly apply over reservoir levels to indirect control the 

risk of energy shortage

 The definition of minimum storage curve may be a challenging task
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Conclusions - Risk aversion approaches (cont’d)

► Approach #3: minimization of a risk measure (CVaR, for 

example)

 Requires the definition of a weight for the CVaR on the objective 

function (parameter definition is a challenging task)

 Protection against higher costs, risk of supply failures is a consequence
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