

Implementation and assessment of alternative risk aversion methodologies for large scale stochastic hydrothermal scheduling

Luiz Carlos da Costa Jr

luizcarlos@psr-inc.com

Motivation

Hydrothermal generation scheduling

 Objective: optimize the use of existing resources (hydro, natural gas, renewables etc.) over a planning horizon

Motivation

Hydrothermal generation scheduling

 Objective: optimize the use of existing resources (hydro, natural gas, renewables etc.) over a planning horizon

Characteristics:

- Time-coupled: it is possible to store water in the reservoirs for future
- Strong stochastic components

Motivation

Hydrothermal generation scheduling

 Objective: optimize the use of existing resources (hydro, natural gas, renewables etc.) over a planning horizon

Characteristics:

- Time-coupled: it is possible to store water in the reservoirs for future
- Strong stochastic components
- Trade-off: minimum cost x supply reliability
 - Minimum cost operation → least reliable
 - Most reliable operation → most expensive

Stochastic optimization model

Stochastic parameters

- Hydro inflows and renewable generation (wind, solar, biomass etc.)
 - Multivariate stochastic model (PAR(p))
 - Inflows: macroclimatic events (El Niño), snowmelt and others
 - Spatial correlation of wind, solar and hydro
 - External renewable models can be used to produce scenarios
- Uncertainty on fuel costs
 - Markov chains (hybrid SDDP/SDP model)
- Wholesale energy market prices
 - Markov chains
- Load variability and equipment outages
 - Monte Carlo sampling

Solution algorithm: stochastic dual dynamic programming (SDDP)

- Avoids "curse of dimensionality" of traditional SDP \Rightarrow handles large systems
- Suitable for distributed processing

Iterative procedure

- 1. forward simulation: finds new states and provides upper bound
- 2. backward recursion: updates FCFs and provides lower bound
- 3. convergence check (LB in UB confidence interval)

Iterative procedure

- 1. forward simulation: finds new states and provides upper bound
- 2. backward recursion: updates FCFs and provides lower bound
- 3. convergence check (LB in UB confidence interval)

Distributed processing

- The one-stage subproblems in both forward and backward steps can be solved simultaneously, which allows the application of distributed processing
- SDDP has been running on computer networks since 2001; from 2006, in a cloud system with AWS
 - We currently have 500 virtual servers with 16 CPUs and 900 GPUs each

Objective function (min immediate cost + future cost)

$$\alpha_t(\{v_{t,i}\}) = Min \ \sum_{\tau} \sum_j c_j g_{t\tau j} + \sum_{\tau} \delta r_{t\tau} + \alpha_{t+1}(\{v_{t+1,i}\})$$

Objective function (min immediate cost + future cost)

$$\alpha_t(\{v_{t,i}\}) = Min \ \sum_{\tau} \sum_j c_j g_{t\tau j} + \sum_{\tau} \delta r_{t\tau} + \alpha_{t+1}(\{v_{t+1,i}\})$$

Storage balance

$$v_{t+1,i} = v_{t,i} + a_{t,i} - u_{t,i} \quad \forall i = 1, \dots, I$$

Objective function (min immediate cost + future cost)

$$\alpha_t(\{v_{t,i}\}) = Min \ \sum_{\tau} \sum_j c_j g_{t\tau j} + \sum_{\tau} \delta r_{t\tau} + \alpha_{t+1}(\{v_{t+1,i}\})$$

Storage balance

$$v_{t+1,i} = v_{t,i} + a_{t,i} - u_{t,i} \quad \forall i = 1, \dots, I$$

Power balance

$$\sum_{\tau} \left(\sum_{j} g_{t\tau j} + \sum_{i} e_{t\tau i} \right) + r_{t\tau} = \hat{d}_{t\tau} - \sum_{n} \hat{r}_{t\tau n} \quad \forall \tau = 1, \dots, T$$

Objective function (min immediate cost + future cost)

$$\alpha_t(\{v_{t,i}\}) = Min \ \sum_{\tau} \sum_j c_j g_{t\tau j} + \sum_{\tau} \delta r_{t\tau} + \alpha_{t+1}(\{v_{t+1,i}\})$$

Storage balance

$$v_{t+1,i} = v_{t,i} + a_{t,i} - u_{t,i} \quad \forall i = 1, \dots, I$$

Power balance

$$\sum_{\tau} \left(\sum_{j} g_{t\tau j} + \sum_{i} e_{t\tau i} \right) + r_{t\tau} = \hat{d}_{t\tau} - \sum_{n} \hat{r}_{t\tau n} \quad \forall \tau = 1, \dots, T$$

Future cost function (FCF)

$$\alpha_{t+1} \ge \sum_{i} \pi_{vi}^{k} v_{t+1,i} + \sum_{i} \pi_{ai}^{k} a_{t+1,i} + \delta^{k} \quad \forall k = 1, \dots, K$$

Stochastic optimization with risk aversion

Stochastic optimization with risk aversion

Three approaches to risk aversion

- 1. Penalize supply failures
 - Economic cost of failure + "risk premium"

Three approaches to risk aversion

- 1. Penalize supply failures
 - Economic cost of failure + "risk premium"
- 2. Ensure feasibility for a set of critical scenarios
 - Hybrid robust/stochastic optimization

Three approaches to risk aversion

- 1. Penalize supply failures
 - Economic cost of failure + "risk premium"
- 2. Ensure feasibility for a set of critical scenarios
 - Hybrid robust/stochastic optimization
- 3. Give more weight to higher costs in the SDDP recursion
 - Equivalent to skewing the conditioned inflow distribution in SDDP's backward step

μ

 $\begin{array}{ll} \min E(z) \\ R \leq \eta & \mu \end{array}$

Lagrangian relaxation $\max_{\mu} \operatorname{Min} E(z) + \mu(R - \eta)$

Challenge: reliability criterion

1. Expected energy not supplied (EENS) does not reflect risk of failure

2. On the other hand, risk of failure does not capture *severity*

Lagrangian relaxation ensures problem separability

$$\max_{\mu} \operatorname{Min} E[z] + \mu(\operatorname{CVaR}_{\alpha}[r] - \eta)$$

Lagrangian relaxation ensures problem separability

$$\max_{\mu} \operatorname{Min} E[z] + \mu(\operatorname{CVaR}_{\alpha}[r] - \eta)$$

• Linear expression for
$$\text{CVaR}_{\alpha}(r)$$
:
 $\text{CVaR}_{\alpha}[r_{\tau}] = \inf_{b} \left\{ b + \frac{1}{\alpha} E[r-b]^{+} \right\}$

Lagrangian relaxation ensures problem separability

$$\max_{\mu} \operatorname{Min} E[z] + \mu(\operatorname{CVaR}_{\alpha}[r] - \eta)$$

• Linear expression for
$$\text{CVaR}_{\alpha}(r)$$
:
 $\text{CVaR}_{\alpha}[r_{\tau}] = \inf_{b} \left\{ b + \frac{1}{\alpha} E[r-b]^{+} \right\}$

SDDP "new" first stage problem: Min $\mu \mathbf{b} - \mu \eta + E[z(\mathbf{b})]$

Lagrangian relaxation ensures problem separability

$$\max_{\mu} \operatorname{Min} E[z] + \mu(\operatorname{CVaR}_{\alpha}[r] - \eta)$$

Objective function (min immediate cost + future cost)

 $\alpha_t(\{v_{t,i}\}, \mathbf{b}) = Min \ \sum_{\tau} \sum_j c_j g_{t\tau j} + \sum_{\tau} \delta r_{t\tau} + \frac{\mu}{\alpha} y_t + \alpha_{t+1}(\{v_{t+1,i}\})$

Storage balance

$$v_{t+1,i} = v_{t,i} + a_{t,i} - u_{t,i} \quad \forall i = 1, ..., I$$

Power balance

$$\sum_{\tau} \left(\sum_{j} g_{t\tau j} + \sum_{i} e_{t\tau i} \right) + r_t = \hat{d}_{t\tau} - \sum_{n} \hat{r}_{t\tau n} \quad \forall \tau = 1, \dots, T$$

Second deficit segment

 $\mathbf{y}_{\mathbf{t}} \geq \sum_{\tau} r_{t\tau} - \boldsymbol{b}$

Future cost function (FCF)

 $\alpha_{t+1} \geq \sum_{i} \pi_{vi}^{k} v_{t+1,i} + \sum_{i} \pi_{ai}^{k} \alpha_{t+1,i} + \delta^{k} \quad \forall k = 1, \dots, K$

Economic interpretation for CVaR of ENS

For example, the expected energy not supplied in the 1% quantile should not exceed 5% of load

Economic interpretation for CVaR of ENS

For example, the expected energy not supplied in the 1% quantile should not exceed 5% of load

Economic interpretation for CVaR of ENS

For example, the expected energy not supplied in the 1% quantile should not exceed 5% of load

SDDP with CVaR on supply reliability

Risk Aversion Surface (SAR)

Approach #3: CVaR on operation cost

New objective function of the one-stage problem

 $Min \ \lambda E(z) + (1 - \lambda) CVaR_q(z)$

Approach #3: CVaR on operation cost

New objective function of the one-stage problem

 $Min \ \lambda E(z) + (1 - \lambda) CVaR_q(z)$

Nested form

Approach #3: CVaR on operation cost

- New objective function of the one-stage problem $Min \lambda E(z) + (1 - \lambda)CVaR_q(z)$
- Nested form
- The CVaR-cost criterion is easy to implement in SDDP, because it is equivalent to changing the weights of the conditioned inflow scenarios in the backward recursion
 - This interpretation also allows a simple and exact calculation of the upper bound in the SDDP algorithm with CVaR, which had been a concern for some time

- Characteristics:
 - 157 hydro plants / reservoirs
 - 119 thermal plants
 - 5 nodes
- Horizon (static):
 - 5 years + 5 years buffer
 - monthly stages
- Uncertainty representation
 - 30 branching backward
 - simulation 1,200 forward scenarios

- ► CVaR constraint: EENS @ 4% quantile \leq 5% load
- Economic cost of deficit: 3,100 R\$/MWh

- ► CVaR constraint: EENS @ 4% quantile \leq 5% load
- Economic cost of deficit: 3,100 R\$/MWh

Optimal solution

- 12 iterations to converge
- Penalty ≈ 11.62 R\$/MWh
- 2nd slope \approx 290.53 R\$/MWh
- $\text{CVaR}_{4\%}(R) = 4.86\%$

- ► CVaR constraint: EENS @ 4% quantile \leq 5% load
- Economic cost of deficit: 3,100 R\$/MWh

- Optimal solution
 - 12 iterations to converge
 - Penalty ≈ 11.62 R\$/MWh
 - 2nd slope \approx 290.53 R\$/MWh
 - $\text{CVaR}_{4\%}(R) = 4.86\%$

Lagrangian function

Lagrangian function

Accumulated supply failure distribution

Stored energy (years 1 and 2)

Approach #2: hybrid robust/stochastic optimization

Approach #3: CVaR on objective function

Operating costs

Comparison of risk aversion approaches

Approach→ Attribute↓	CVaR-EENS	SAR	CVaR-cost
Easy to understand?	Yes	Yes	Sort of
Represents risk aversion directly?	Yes	Yes	No
Easy to calibrate?	Medium	Yes	No
Additional computational effort with respect to standard SDDP	High to calculate segment, low after it	Medium	Low

Policy makers want to be protected against unlikely events with bad consequences

- Policy makers want to be protected against unlikely events with bad consequences
- ISO's concern is often the "risk" of supply failures
 - The risk level may not depend on other costs (for example, fuel costs)

- Policy makers want to be protected against unlikely events with bad consequences
- ISO's concern is often the "risk" of supply failures
 - The risk level may not depend on other costs (for example, fuel costs)
- Expectation can be a "naive" (risk neutral) measure:
 - For example, it cannot distinguish between two energy shortages of 100 MW or one of 200 MW

- Policy makers want to be protected against unlikely events with bad consequences
- ISO's concern is often the "risk" of supply failures
 - The risk level may not depend on other costs (for example, fuel costs)
- Expectation can be a "naive" (risk neutral) measure:
 - For example, it cannot distinguish between two energy shortages of 100 MW or one of 200 MW
- CVaR is a good (risk averse) alternative:
 - Sensitive to the tail of the distribution, representing a protection against extreme scenarios
 - Coherent risk measure
 - Convex: can be incorporated in decomposition schemes like SDDP

Conclusions - Risk aversion approaches

- Approach #1: minimization of E[.] considering a CVaR constraint
 - CVaR constraint is directly applied over the supply failure variable to ensure the desired risk level
 - The definition of the acceptable risk level is a pre-defined criteria
 - Implicit cost function for supply failures is a result

Conclusions - Risk aversion approaches

- Approach #1: minimization of E[.] considering a CVaR constraint
 - CVaR constraint is directly applied over the supply failure variable to ensure the desired risk level
 - The definition of the acceptable risk level is a pre-defined criteria
 - Implicit cost function for supply failures is a result
- Approach #2: aversion curve surface
 - Constraints directly apply over reservoir levels to indirect control the risk of energy shortage
 - The definition of minimum storage curve may be a challenging task

Conclusions - Risk aversion approaches (cont'd)

- Approach #3: minimization of a risk measure (CVaR, for example)
 - Requires the definition of a weight for the CVaR on the objective function (parameter definition is a challenging task)
 - Protection against higher costs, risk of supply failures is a consequence

Implementation and assessment of alternative risk aversion methodologies for large scale stochastic hydrothermal scheduling

THANK YOU

Luiz Carlos da Costa Jr

luizcarlos@psr-inc.com

