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Introduction

» Non-hydro renewable generation in energy markets:
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Introduction

Renewable generation penetration in energy
markets:
In Brazil:
3% of total generation capacity is Wind power
Great solar generation potential

All over the world:

In 2015, over 60 GW of wind generation sources were installed in the

world, half of this capacity in China

In Germany, the goal is to have renewable generation responsible for 80%

of total yearly energy generation in 2050.
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frame generation uncertainties
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» We need hourly resolution !
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Number of variables in the optimization problem for Brazil

system (1 month)

Constraints 3 Block problem Hourly
problem
Water balance constraints 161 + 117,000
LLoad balance constraints 12 + 2,900
Maximum generation & turbining constraints 900 +219,000
Maximum & minimum volume constraints 322 +235,000
Total 1461 +573,000




Introduction

Number of variables in the optimization problem for Brazil

system (1 month)

Constraints 3 Block problem Hourly
problem
Water balance constraints 161 + 117,000
LLoad balance constraints 12 + 2,900
Maximum generation & turbining constraints 900 +219,000
Maximum & minimum volume constraints 322 +235,000
Total 1461 +573,000

How can we obtain hourly based results without representing hourly
variables ?
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Basic concepts

First-stage .
problem problem
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Second-stage

Future Costs

min Z cg + a

Vt+1:Vt+a_u_S

pige= d

pu=e
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Minimum total costs
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variables
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First-stage .
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Second-stage

First-Stage problem 4 c <A<cC
Immediate
First-stage master Cost
problem

Hydroelectric generated energy

l

First-stage slave
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How can we calculate de immediate cost function?

If we calculate the immediate cost for several possible hydroelectric
generations scenarios:

Immediate
Cost
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» How can we calculate de immediate cost function?

= |f we calculate the immediate cost for several possible hydroelectric
generations scenarios:
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Immediate cost function calculation method

» We can calculate the immediate cost function by enumerating
all possible hydroelectric positions:
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Immediate cost function calculation method

» We can calculate the immediate cost function by enumerating
all possible hydroelectric positions:
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Immediate cost function calculation method

Intersection points are related to hydro plant dispatch position

For every hour of a given stage (month or week) and
hydroelectric position, we can calculate the optimal immediate
COst:

First, we need to calculate the optimal generation for every thermal

plant i

_ 6°
gi = g; X min {1,5—1}

Where §° is the residual demand considering all generators before i in
dispatch order

The immediate cost is obtained by calculating Z Ci9;




Immediate cost function calculation method

Furthermore, we can discover mid dispatches only by having
dispatches with the hydro plant in first and last positions.

Method Numbgr of
operations

Optimization — discretization of 100

function in equal intervals

Calculation of points for every 4

hydro plant position

Calculation of points for hydro 2

plant in first and last positions
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» In multi-area systems, we need to use min cut approach:
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Immediate cost function calculation method

Immediate cost function calculations can be performed
BEFORE SDDP execution, in parallel

Points are then transformed into plans and inserted in SDDP

just as FCF cuts.
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SDDP simulation performed using immediate cost approach and hourly
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» Panama & Costa Rica & Nicaragua

4000

3500

3000

2500

2000

1500

1000

500

500
450
400
350
300
250
200
150
100

50

Total resolution time (s)

3381

Hourly FCl

Number of times faster than the hourly problem

434
317
287 .
ECl

W 1 system
W2 systems

W 3 systems

W 1system
W 2 systems

W 3 systems
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Final conclusions

Renewable generation variability demands hourly
representation, which is time consuming in current SDDP

The methodology enables the obtainment of costs based on
hourly results without representing hourly variables

SDDP execution time using this approach is close execution
time using block representation

The approach can also be used to represent batteries and
run-of-river plants. In this case, we would use interconnected

hourly graphs to represent intra-stage time dependence
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