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Resumo

Nunes Metello, Camila; Castro Souza, Reinaldo; Veiga, Mario.
Representação analítica da função de custo imediato no
SDDP.. Rio de Janeiro, 2016. 82p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

A penetração crescente de geração de energia renovável combinada com o
desenvolvimento de baterias eficazes, capazes de estocar energia no curto
prazo, demandam a representação horária (ou até sub horária) de modelos
de despacho de operação. A necessidade de representar intervalos de tempo
tão curtos implicaria no aumento significativo da dimensão do problema,
possivelmente o tornando intratável computacionalmente.
Nesta dissertação, é proposto um método capaz de levar em consideração
tais pequenos intervalos de tempo, evitando o aumento considerável de
esforço computacional para problemas de despacho hidrotérmico. Este
método consiste em calcular a representação analítica da função custo
imediato que é então aplicada no contexto de programação dinâmica dual
estocástica (SDDP). A função representa os custos operativos imediatos em
função da decisão ótima de geração hidrelétrica total. Como a função de
custo imediato é linear por partes, ela possui estrutura muito semelhante
à utilizada para aproximar a função de custo futuro (conjunto de cortes).
São apresentados resultados da aplicação do método em sistemas de energia
reais.

Palavras-chave
Despacho;. PDDE;. Programação matemática;.



Abstract

Nunes Metello, Camila; Castro Souza, Reinaldo; Veiga, Mario.
Analytical representation of immediate cost functions in
SDDP.. Rio de Janeiro, 2016. 82p. MsC Thesis – Department of
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

The increasing penetration of renewable generation plants in electric sys-
tems, combined with the development of effective short-term energy storage
batteries, demand scheduling to be represented on an hourly basis or even in
smaller time intervals. Multistage stochastic optimization in such time reso-
lution would imply in the increase of the problem’s dimension, which might
result in the impossibility of solving such problems. This work presents
a method that is able to take into account such small time intervals while
avoiding the considerable increase of computational effort. This method con-
sists in calculating the analytical representation of the immediate cost func-
tion that is applied in the context of stochastic dual dynamic programming
(SDDP). The function represents immediate operation costs as a function
of the total hydroelectric generation optimal decision. As the immediate
cost function is piecewise linear, it leads to a structure very similar to the
one used to approximate the future cost function (cut sets). Results of the
application of the method in real electric systems are presented.

Keywords
Scheduling;. SDDP;. Mathematical programming;.
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NOTATION
Indexes

i = 1, . . . , I hydro plants

j = 1, . . . , J thermal plants

p = 1, . . . , P hyperplanes (Benders cuts) in the future cost function

r = 1, . . . , R electrical areas

t = 1, . . . ,T time stages (typically weeks or months)

τ = 1, . . . , T intra-stage time intervals (e.g. peak/medium/low demand or
168 hours in a week)

Ui set of hydro plants immediately upstream of plant i

l = 1, . . . , L hyperplanes (Benders cuts) in the immediate cost function

Ωr set of hydro plants in area r

Θr set of thermal plants in area r

Decision variables for the operation problem in stage t

vt+1,i stored volume of hydro i by the end of stage t

ut,i turbined volume of hydro i stage t

νt,i spilled volume of hydro i in stage t

et,τ,i generation of hydro i in time interval τ , stage t

et,i generation of hydro i in stage t

et,r total hydro generation in area r in stage t

gt,τ,j generation of thermal plant j in time interval τ , stage t

f q,rt,τ power flow from area q to area r in time interval τ , stage t

αt+1 present value of expected future cost from t+ 1 to T

βt present value of immediate cost at stage t

Known values for the operation problem in stage t

ât,i lateral inflow to hydro i in stage t
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ui maximum turbined outflow of hydro i

v̂t,i stored volume of hydro i in the beginning of stage t

vi maximum storage of hydro i

ρi production coefficient of hydro i

ei maximum energy generation of hydro i

cj variable operating cost of thermal plant j

gj maximum generation of thermal plant j

δ̂t,τ residual load (load - renewable generation) in time interval τ , stage t

f
q,r maximum power flow between areas q and r

Benders cut coefficients - Future Cost Function

φ̂pt+1,i coefficient of cut p for hydro plant i’s storage, vt+1,i

σ̂pt+1 constant term

Immediate Cost Function

µ̂lt,i coefficient of cut l for hydroelectric generation i , et,q

∆̂l
t constant term of cut l

êkt total hydroelectric generation in area q, stage t, discretizarion k

β̂kt immediate cost in stage t, discretization k

Multipliers

πht,i multiplier associated to the water balance equations of hydroelectric plant
i in stage t

παpt,i multipliers associated to the future cost function constraint of hydroelec-
tric plant i in stage t



1
Introduction

1.1
Hydrothermal system generation

Historically, hydroelectricity has been the most important renewable
energy source and, in many countries, also the most economic option. Even
today, despite the explosive growth of wind, solar and biomass, renewable
energy is still dominated by hydropower. For instance, a recent World Bank
survey (31) (2013) on hydroelectric penetration shows several countries in
which hydroelectric generation has a significant importance in total energy
generation: Iceland(71%),Colombia(68.5%), Brazil (68%), Canada(60%) and
several others.

It is also well-known (32) that scheduling the production and planning
the capacity expansion of systems with a significant hydro share is a complex
problem due to two features of this source: (i) energy storage in the reservoirs;
and (ii) high variability of inflows to hydro plants. The storage feature (i)
means that it is not possible to determine the least-cost operation of a
hydrothermal system without assessing the tradeoff between using hydro-
power now – and thus avoiding some thermal generation costs – or storing
the water for future use, when the thermal cost savings could be higher. This
time coupling makes hydrothermal operation much more complex than that of
purely thermal systems, where the optimal scheduling for each time stage can
be determined independently of the next stages 1. The problem complexity is
compounded by feature (ii), inflow variability. The reason is that uncertainty
about future inflows means that the tradeoff between immediate and future use
of hydropower has to be evaluated probabilistically, that is, for each branch of a
“tree” of future inflow scenarios. Figure 1.1 illustrates the so-called “operator’s
dilemma” for a toy system composed of two time stages and two future inflow
scenarios.

1Thermal restrictions such as unit commitment and ramp constraints only create short-
term dependency
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Figure 1.1: Dispatch uncertainty decision making problem

In this toy system, we could calculate the operating cost for each
alternative decision and inflow scenario and select the one that results in the
smallest expected operation cost. In real life, however, this tree is very large. In
Brazil, for example, there are 30 inflow scenarios per month (12), which means
that the number of nodes is 30T , where T represents the future months that can
be affected by an operating decision today (“horizon of influence”). Intuitively
the horizon of influence increases with the hydro storage capacity. In the case
of Brazil, which due to its topography has very large reservoirs, T is 60 months
(five years) (12). As a consequence, the scenario tree that the Brazil’s National
System Operator (ONS) has to evaluate has 3060 ≈ 1088 nodes, more than the
number of particles (electrons, photons etc.) in the observable universe.

Because of this combination of economic importance and methodological
complexity, optimizing the operation and planning of hydrothermal systems
has always been a pioneering area for the application of advanced stochas-
tic optimization techniques. In particular, stochastic dynamic programming
(SDP), described in (7) and (30) (See Appendix A for more details) and more
recent improvements such as stochastic dual dynamic programming (SDDP)
(24) and (23) , approximate dynamic programming (ADP) (25) and others,
have been widely applied to real-life systems for decades.

In this work, we propose an extension of the SDDP algorithm, which
is one of the most widely applied for hydrothermal scheduling worldwide.
Appendix B describes the SDDP scheme in detail.

1.1.1
Immediate and future cost functions

All stochastic DP-based algorithms decompose the multistage optimiza-
tion problem into a sequence of one-stage operation problems, where the stage
is typically a month, or a week, and the objective is to determine the hydro
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production schedule that minimizes the total cost given by the sum of two
functions: immediate cost and expected future cost of supplying the load. As
their names imply, these functions represent the trade-off between using the
hydro production now and storing the water for use in the future.

Figure 1.2: Immediate and future cost functions

The immediate cost function (ICF) provides the least-cost dispatch, i.e.,
the minimum thermal fuel cost of supplying the residual demand (load – hydro
production) along the current stage. As figure 1.2 shows, the ICF increases as
the amount of storage left for the next stage also increases. In turn, the future
cost function (FCF) is related to the expected use of hydropower in the future
stages and scenarios. As expected, the FCF goes in the opposite direction of
the ICF, decreasing with the final storage.

If the ICF and FCF had the simple shapes of the above figure, it
would be easy to see that the optimal solution of Min ICF (v) + FCF (v)
would be the volume v∗ that equalizes the function derivatives, i.e. ∂ICF (v)

∂v
=

−∂FCF (v)
∂v

for v = v∗. In hydropower scheduling, these derivatives are known as
the immediate and future water values, because they represent the opportunity
costs of using the water now or storing it for the future. As a consequence, the
optimality condition may be interpreted as the following operational logic: if
the future water value is higher than the immediate one

(
|∂FCF (v)

∂v
| > ∂ICF (v)

∂v

)
,

we store one additional unit of water. The result of this action is to increase the
immediate water value (less water available) and, conversely, to decrease the
future’s (more water). As a consequence, the two water values become closer
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(
|∂FCF (v)

∂v
| ≈ ∂ICF (v)

∂v

)
. The process continues until there is no net economic

benefit of increasing storage, which is the optimality condition.

It will also be seen in this work how to calculate the hydroelectric
opportunity costs ($/MWh), obtained by dividing water values by the hydro’s
production factor. In particular, the fact that opportunity costs are equal at the
optimal solution will be one of the key hypothesis in our proposed methodology.

For all stochastic DP algorithms the ICF is represented implicitly through
the equations and constraints of the least-cost dispatch mentioned above. In
turn, the FCF is built through a so-called backward recursion in which one-
stage operation problems are successively solved from the last to the first
stage. The essential difference between these algorithms proposed so far is on
the methods for building the FCF and the simplifying assumption.

A second key concept of our proposed methodology is to build an explicit
ICF as a piecewise linear function.

1.2
One-stage operation problem in SDDP

The SDDP time stage is typically a week, or month, which is indexed
by t = 1, . . . , T . In each stage, there are τ = 1, . . . , T intra-stage time
intervals, representing, for example, the 730 hours in a month or, as it will
be seen later, aggregated load blocks, for example high, medium and low load
levels. Next, we formulate, without loss of generality, a simplified version (no
network representation, no variable hydro production factor, etc.) of the SDDP
operation problem in stage t.

Objective function

The objective is to minimize the total cost αt given by immediate
and future costs. The immediate cost is represented by the sum of thermal
generation costs cj × gt,τ,j along the intra-stage time intervals τ = 1, . . . , T . In
turn, the future cost is represented by the function αt+1(vt+1), which will be
detailed later.

αt(v̂t) = Min
∑
j

cj
∑
τ

gt,τ.j + αt+1(vt+1) (1-1)

Where v̂t is the storage at the beginning of stage t (ˆ indicates a known
value), j ∈ J are indexes the thermal plants, cj is the variable operating cost
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of thermal plant j and gt,τ,j is the energy generation of thermal plant j in
block τ , stage t.

Water balance for each stage

The next set of equations represents the storage variation in the system
reservoirs: the final storage is equal to initial storage plus the inflow along the
stage (lateral inflow plus outflows from the upstream plants) minus the plant’s
outflow (turbined and spilled).

vt+1,i = v̂t,i + ât,i +
∑
m∈Ui

(ut,m + νt,m)− ut,i − νt,i,∀i ∈ I (1-2)

Where i ∈ I are the indexes the hydro plants, vt+1,i is the stored volume
of hydro i by the end of stage t, v̂t,i is the stored volume of hydro i in the
beginning of stage t, ât,i is the lateral inflow to hydro i in stage t, ut,i is
the turbined volume of hydro i stage t, νt,i is the spilled volume of hydro i
in stage t andm ∈ Ui is the set of hydro plants immediately upstream of plant i.

It is important to observe that in this formulation the water balance is
carried out for the entire stage, not for each intra-stage time interval. That is,
we assume that the hydro storage is large enough to accommodate any intra-
stage variation in the hydro production schedule.

This assumption is consistent with the fact that the reservoir storage
is represented as a state variable in the stochastic DP recursion, i.e. that
there is a meaningful tradeoff between using the water in stage t or storing
it for future use. It is also the operational reality in the 70 countries where
SDDP has been applied (we will show later how smaller reservoirs with
regulation horizons smaller than the stage duration can be represented by
the methodology proposed in this work).

Storage and turbined outflow limits

vt+1,i ≤ vi,∀i ∈ I (1-3)
ut,i ≤ ui,∀i ∈ I (1-4)

Where vi is the maximum storage of hydro i and ui is the maximum
turbined outflow of hydro i.
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Hydro generation

In this set of constraints, the total hydro generation for stage t, et,i, is
obtained from the turbined outflow ut,i. This total hydro generation is then
disaggregated into a generation schedule et,τ,i for each interval τ .

et,i = ρiut,i, ∀i ∈ I (1-5)∑
τ

et,τ,i = et,i, ∀i ∈ I (1-6)

et,τ,i ≤ ei, i ∈ I (1-7)

Where ρi is the production coefficient (kWh/m3) of hydro i and ei is
the maximum energy generation of hydro i.

Load supply for each intra-stage interval

The sum of hydro plus thermal generation is equal to the residual load
demand minus renewable generation.

∑
i

et,τ,i +
∑
j

gt,τ,j = δ̂t,τ ,∀τ ∈ T (1-8)

gt,τ,j ≤ gj,∀τ ∈ T (1-9)

Where δ̂τ,t is the residual load (load - renewable generation) of time τ ,
stage t and gj is the maximum generation of thermal plant j.

Future cost function

In the SDDP scheme, the future cost function is represented by a set of
hyperplanes

αt+1 ≥
∑
i

φ̂pt+1,i × vt+1,i + σ̂pt+1,∀p ∈ P (1-10)

Where p ∈ P are the hyperplanes (Benders cuts) in the future cost
function, φ̂pt+1,i is the coefficient of cut p for hydro plant i’s storage, vt+1,i and
σ̂pt+1 is the constant term of cut p.

Appendix B describes the calculation of the hyperplane coefficients φ̂pt+1,i

and constant term σ̂pt+1 .
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1.3
Solution of the one-stage operation problem

The operation problem (1-1 - 1-10) is a linear programming (LP) problem
and, thus, can be solved by any available commercial optimization software.
However, computational efficiency is important because this problem has to be
solved a very large number of times in the SDDP scheme: T (number of time
stages) × K (SDDP iterations) × S (scenarios in SDDP’s forward step) × L

(number of conditioned inflow scenarios in SDDP’s backward step).

1.3.1
Managing the number of operation problems

As an illustration, the SDDP-based Monthly Operation Plan (PMO) (12)
calculated by Brazil’s National System Operator (ONS) has T=120; K=25;
S=2000; L=20, which results in 126 million LPs. Fortunately, the SDDP
algorithm is very suitable for distributed processing techniques (shown in
appendix B), which has allowed the solution of large scale systems such as
Brazil’s in a reasonable amount of time. Using PSR’s SDDP model (26), the
PMO case takes around 90 minutes (using 16 processors).(19) also presented
a study on the efficiency of SDDP parallelization.

1.3.2
Improving the solution time of each operation problem

In the distributed processing scheme, each “grain” is the solution of a
one-stage operation problem (1-1 - 1-10). This means that a reduction in the
individual LP solution time has a direct impact on the total solution time,
which has motivated the investigation of customized LP solution schemes. As
usual, the starting point for these investigations is the structure of the problem
variables and constraints. As seen, the operation problem is composed of the
following sets of constraints (ignoring bounds): (i) water balance and hydro
generation equations: 2×I; (ii) power balance equations: T (number of time
intervals); (iii) future cost function (FCF): K (SDDP iterations) ×S (scenarios
in the probabilistic simulations) hyperplanes. For the same Brazilian PMO
example (considering the individualized representation of the hydroelectric
plants), we have: (i) 2×I (=130)=260; (ii) T =730 (assuming monthly hourly
intervals); and (iii) K(=25) × S(=2000)=50,000.

In turn, the LP variables are: (a) hydro-related (final storage, turbined
and spilled outflow per stage): 3×I; and (b) power-related (hydro and thermal
generation per time interval): T ×(I+J). For the PMO example, we have: (a)
3×I (=130)=390; and (b) T (=730)×(I (=130)+J (=150))=204,400.
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1.3.3
Relaxation schemes for the FCF

Initially, we observe that the constraints are dominated by the 50,000
FCF hyperplanes. However, we know from experience that only a few of
those hyperplanes will be binding at the optimal solution. As a consequence,
relaxation schemes with dual simplex steps were shown to be very effective,
requiring only 5 to 10 hyperplanes to be added.

A third key concept of our work is to apply the same effective relaxation
techniques to the proposed analytical immediate cost function.

1.3.4
Aggregation of time intervals

Given that the FCF constraints can be handled by relaxation, the next
“bottleneck” is the number of intra-stage time intervals T . For the Brazilian
system, for example, solving a problem with 730 intervals may take 400 times
longer than solving for only one block (that is, the average load).

Historically, the solution has been to aggregate the hourly intervals
into load blocks, for example, high, medium and low load levels. Figure 1.3
illustrates a popular aggregation technique, in which the hourly loads are
ordered from highest to lowest and then aggregated into clusters (three, in
this case), widely known as load duration curve (LDC).

Figure 1.3: Example of transformation of hourly load curve into a load duration
curve with 3 blocks
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1.4
Motivation for this work

The use of load duration curves, together with distributed processing
techniques, has allowed a significant reduction of SDDP’s computational effort
without loss of accuracy. This, in turn, has contributed significantly to the
successful application of stochastic optimization techniques to the operation
and planning of large-scale systems for the past several years.

More recently, however, the worldwide growth of renewable generatioan
such as wind, biomass and solar has led to concerns about the accuracy of
using load duration curves in probabilistic operation and planning. The reason
is that the energy produced by those new resources may vary substantially in
very short intervals.

For this reason, the analysis of renewable insertion is usually carried out
with hourly intervals, or even shorter, 5-15 minutes.

At first sight, the clustering technique of figure 3 could still be used,
only applied now to the residual load, i.e., subtracted from the renewable
production. The computational effort would be higher because the renewable
production in SDDP – and hence the net load – may be different for each
stage and scenario, but still, it would be much smaller than representing the
hourly load. However, this approach has two potential drawbacks: (i) differently
from loads, which usually have a strong spatial correlation (i.e. the peak hours
in different regions tend to coincide, and so on), renewable production is
much more dispersed. As a consequence, the clustering of residual loads in
multiple regions becomes more complex and less accurate; (ii) by construction,
the clustering scheme cannot represent the chronological evolution of energy
production, which is an important feature in the case of renewables because
the chronological sequence affects, for example, the requirements for generation
reserve.

Last, but not least, planners and operators have had decades of expe-
rience to assess the accuracy of – and get comfortable with – the clustering
schemes in systems with hydropower. However, the insertion of renewables has
not only been very fast but also changed significantly the operation pattern,
leading to unexpected events such as “wind spills” in the hydro-dominated US
Pacific Northwest system and to negative spot prices in Germany and other
countries. For this reason, there is a great interest in representing much shorter
intervals (and chronology) in SDDP’s operating problem for each stage.

As seen above, there is no methodological difficulty in representing 730
hours per month in the operating problem; the major concern is the (also seen)
very large impact of two orders of magnitude on execution time.
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1.5
Proposed Methodology

In this work, we propose a methodology that allows for the accurate
chronological representation of hourly (or sub-hourly) intervals in SDDP with
a very modest increase in computational effort. As mentioned previously, the
first basic idea is to represent the immediate cost function explicitly. In this
case, the operating problem (1-1 - 1-10) would be represented as follows:

αt(v̂t) = Minβt(et) + αt+1 (1-11)
vt+1,i = v̂t,i + ât,i − (ut,i + νt,i) +

∑
u∈Ui

(ut,u + νt,u),∀i ∈ I ← πht,i (1-12)

vt+1,i ≤ vi,∀i ∈ I (1-13)
ut,i ≤ ui,∀i ∈ I (1-14)
et,i = ρiut,i,∀i ∈ I (1-15)
αt+1 ≥

∑
i

φ̂pt+1,i × vt+1,i + σ̂pt+1,∀p ∈ P ← παpt,i (1-16)

It is interesting to observe that problem (1-11 - 1-16) no longer represents
the time intervals τ = 1, . . . , T and, therefore, the load supply for each interval.
All these equations and constraints are now represented by βt(et).

This means that, if βt(et) were available, SDDP’s computational effort
would, in principle, be the same for one average block; or hourly intervals; or
five-minute intervals, which would be a significant computational advantage.

1.5.1
Equality of opportunity costs at the optimal solution

The above formulation also makes it easier to show the immediate and
future water values, seen previously for the simple example of figure 1.1.1. The
immediate water value of each hydro plant i is the multiplier πht,i associated
to the water balance equations 1-12 at the optimal solution. In turn, the
future water value is the coefficient φ̂pt+1,i of the hyperplane p that is binding
for constraint 1-16 at the optimal solution 2. It is also possible to obtain the
hydroelectric plant’s opportunity costs, which are, as mentioned before, the
result of the division of the water values by the hydroelectric plants’ production
factor.

2If more than one hyperplane is binding, we know from LP theory that the water value
is a subgradient, i.e. a convex combination of the coefficients, where the weights are the
multipliers παpt,i associated to the hyperplane constraints.
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It is interesting to observe that, if the hydroelectric plants do not hit
turbine limits, i.e. do not turbine at all or turbine at its maximum capacity, in
the solution of the operation problem, the opportunity costs of all hydro plants
have spatially the same value at the optimal solution. We will use this fact in
the proposed methodology. We present the proof of this statement in appendix
C.

1.5.2
Representation of the ICF

As seen, the immediate cost function βt(et) represents the thermal
operation cost required to meet the residual load, i.e., after the scheduled
hydro et is used. We can see from the operation problem (1-1 - 1-10) that
βt(et) can be formulated as the following LP:

βt(et) = Min
∑
j

cj
∑
τ

gt,τ,j (1-17)

∑
τ

et,τ,i = et,i ∀i ∈ I (1-18)

et,τ,i ≤ ei ∀τ ∈ T , i ∈ I (1-19)∑
i

et,τ,i +
∑
j

gt,τ,j = δ̂t,τ ∀τ ∈ T (1-20)

gt,τ,j ≤ gj ∀τ ∈ T , j ∈ J (1-21)

Because the function parameters et,i are on the RHS of the constraints
of an LP problem, we know from LP theory that βt(et) is a piecewise linear
function. Therefore, it can be represented as:

βt ≥
∑
i

µ̂lt,i × et,i + ∆̂l
t,∀l ∈ L (1-22)

The constraints 1-22 will be used in our proposed formulation of the
operation problem, presented next.

1.6
Operation problem with an analytical immediate cost function

The objective of this work is to replace the operation problem formulation
(1-1 -1-10) by the following formulation:
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αt(v̂t) = Min βt + αt+1 (1-23)
vt+1,i = v̂t,i + ât,i − ut,i − νt,i +

∑
m∈Ui

(ut,m + νt,m) ∀i ∈ I (1-24)

vt+1,i ≤ vi ∀i ∈ I (1-25)
ut,i ≤ ui ∀i ∈ I (1-26)
et,i = ρiut,i ∀i ∈ I (1-27)
αt+1 ≥

∑
i

φ̂pt+1,i × vt+1,i + σ̂pt+1 ∀p ∈ P (1-28)

βt ≥
∑
i

µ̂lt,i × et,i + ∆̂l
t ∀l ∈ L (1-29)

Where the constraints 1-29 are pre-calculated. As discussed previously,
this operation problem is much smaller than (1-1 - 1-10) and, therefore, can
be solved more efficiently. In addition, the same effective relaxation techniques
applied to the FCF constraints 1-28 can be applied to the ICF constraints 1-29,
further increasing the efficiency.

1.7
Organization of the work

In chapter 2 we describe the calculation of βt(et) for a simpler case with
just one hydro plant. We show that:

1. The number of segments in the piecewise linear function is J+1, where
J is the number of thermal plants in the system;

2. It is only necessary to calculate βt(et) for two values to build the entire
piecewise function, i.e. although the number of segments depends on the
number of thermal plants, the computational effort does not depend on
them;

3. It is not necessary to solve the thermal dispatch problem (1-17 - 1-21)
to calculate βt(et) ; we show that the problem can be decomposed into
(J + 1)× T comparisons of two pairs of numbers, which can be carried
out in parallel.

As a consequence of features (1)-(3), the computational effort for pre-
calculating βt(et) in this simpler case is negligible.

In chapter 3, we address the case of multiple hydro reservoirs. We show
that, although in theory we would have to evaluate βt(et) for 2I values, where
I is the number of hydro plants, we can take advantage of the optimality
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condition discussed above, that all hydroelectric opportunity cost values are
equal at the optimal solution, to reduce the problem dimensionality, and,
consequently, diminish the number of function evaluations, once more to just
two. As a consequence, the computational effort of calculating βt(et) for the
multi-reservoir case is also very small. Finally, we present the results we
obtained when applying the methodology to the Panama country.

In chapter 4, we extend the proposed methodology to solve systems
with multiple electrical areas, for example Brazil’s four regions, or Central
Americas’ six-country regional pool. We show that the computational effort in
this case is higher than the previous cases for two reasons: (i) the number of
function evaluations is 2R, where R is the number of regions; and (ii) It is no
longer possible to decompose the thermal dispatch problem (1-17 - 1-21) into
independent comparisons of two values.

Despite these limitations, we show that the computation effort of pre-
calculating βt(et) can still be very small if we take advantage of the problem
characteristics:

1. In the case of the higher number of function evaluations (2R instead of
2), they can be carried out in parallel. As a consequence, the total time
corresponds to that of one function evaluation;

2. In the case of multi-area systems, we show that the thermal dispatch
problem (1-17 - 1-21) decomposes into J×T separate max-flow problems,
which again can be solved in parallel. Although the max-flow algorithms
are more efficient than general LP solvers, we can further decrease the
solution time by using the max flow – min cut theorem to transform the
optimization problem into the verification of the max value of a set of
linear constraints;

We finish this chapter by applying the proposed methodology to the
Central America regional market, where we solve the operation problem for two
interconnected countries (Panamá and Costa Rica) and three countries (the
previous two plus Nicarágua). In all cases, the speedups were of two orders
of magnitude, when compared with the solution of the standard operation
problem (1-1 - 1-10).

Finally, Chapter 5 presents the conclusions and proposals for further
research, in particular the representation of storage devices such as batteries
in the calculation of the immediate cost function.
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1.8
Survey of the literature

The need to consider uncertainties in capacity expansion problem on
parameters such as fuel costs, equipment outages and demand resulted in the
creation of a new type of model in the 1980’s: probabilistic production costing
(PPC). The basic idea is to obtain average operating costs of thermal systems
by solving several operation minimization problems and varying the uncertain
parameter. However, solving operation minimization problems can be very
time consuming. There are several alternative algorithms proposed to solve
this problem. (11) introduces a review on them. Many of them rely on the
Baleriaux method ((4) and (9)).

Although much faster than solving optimization problems, this approach
does not take into account time chronology. In other words, the Baleriaux
method does not consider energy transference between stages, as each stage
and scenario problem is solved independently. As a consequence, hydroelectric
plants’ representation needs to be simplified.

(20) proposed a modified algorithm that aimed to maintain chronology
between stages (hydrothermal production costing). The algorithm was based
on solving this type of problem as reliability problems, using the Baleriaux
method and network flow representation.

Later, a different approach to solve HPC was proposed by (10). This
work introduced the concept of the immediate cost function, that represents
operative costs as function of the total hydroelectric generation in the stage.
Furthermore, the idea that this function can be calculated by alternating the
hydroelectric dispatch positions and using the Baleriaux method was also in-
troduced by (10). Also, in order to limit the number of total calculations of
the immediate cost function as they increase with the number of hydroelectric
plants, (10) proposed to iteratively calculate it, using Dantiz-Wolfe decompo-
sition (15).

In this work, we aim to solve hydrothermal operation problems with the
help of the concepts presented above, using the immediate cost function in
SDDP. Furthermore, we will propose a methodology that aims to calculate the
immediate cost function previously to SDDP execution, instead of obtaining
it by using decompositions methods.

1.9
Contributions of this work

The main contributions of this work are: (i) development of a new
and computationally efficient methodology for multiscale representation (e.g.
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hourly or sub-hourly for wind, weekly for hydro) of generation devices in each
stage of stochastic operation problems; (ii) showing that the representation of
convex functions by hyperplanes, originally restricted to the FCFs in SDDP,
is a flexible modeling tool that, in addition, allows the use of efficient relax-
ation techniques - plus GPUs - in the problem solution; (iii) showing that the
decomposition of probabilistic operation problems into easier-to-solve supply
reliability problems, which were originally developed for a non-chronological
“load block” framework, can be efficiently applied to deterministic chronolog-
ical problems.



2
Analytical ICF for a one-hydro system

2.1
Problem formulation

For ease of presentation, we reproduce below the immediate cost problem
(1-17 - 1-21), with only one hydro:

βt(et) = Min
∑
j

cj
∑
τ

gt,τ,j (2-1)

∑
τ

et,τ = et (2-2)

et,τ ≤ e ∀τ ∈ T (2-3)
et,τ +

∑
j

gt,τ,j = δ̂τ,t ∀τ ∈ T (2-4)

gt,τ,j ≤ gj ∀τ ∈ T , j ∈ J (2-5)

2.2
Example

We will illustrate the main concepts for a small system with one hydro
plant and 3 thermal plants. The plant capacities and costs are shown in
table 2.1.

Thermal 1 (T1) Thermal 2 (T2) Thermal 3 (T3) Hydro 1 (H)

Cost ($/MWh) 8 12 15 -
Capacity (MW) 10 5 20 10

Table 2.1: Small example data

The hydro plant production factor was assumed to be 1 MWh/m3 . We
also assume that the operation problem has only 3 hours. Table 2.2 shows the
hourly residual loads (demand – renewable production).
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Hour Load (MWh)

1 24
2 31
3 11

Table 2.2: Load used in example

2.3
Approach 1: solve the operation problem for discrete values of hydroelec-
tric generation

The most direct – and inefficient - approach is to discretize the monthly
hydro production et into K values, êkt , k = 1, . . . , K, ranging from zero to the
maximum hydro energy (hydro plant at full capacity for the entire month)
and solve the operation problem (2-1 - 2-5) for each discrete value êkt . For
example, the optimization problem for the example above considering a total
hydroelectric generation of 20 MWh for all hours would be presented as:

βt(20) = Min 8g1,1 + 12g1,2 + 15g1,3+
8g2,1 + 12g2,2 + 15g2,3 + 8g3,1 + 12g3,2 + 15g3,3

e1 + e2 + e3 = 20
e1, e2, e3 ≤ 10

e1 + g1,1 + g1,2 + g1,3 = 24
e2 + g2,1 + g2,2 + g2,3 = 31
e3 + g3,1 + g3,2 + g3,3 = 11

g1,1, g2,1, g3,1 ≤ 10
g1,2, g2,2, g3,2 ≤ 5
g1,3, g2,3, g3,3 ≤ 20

The result for K = 100 (1% intervals) is shown in figure 2.1. The
horizontal axis in the figure is the total hydro generation et (in MWh) and
the vertical axis is immediate cost βt(et) (in $).
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Figure 2.1: Immediate cost function of the example system

It is possible to see that the immediate cost function is piecewise linear,
as mentioned in chapter 1. We will show that it is possible to take advantage
on the problem structure in order to obtain the immediate cost function more
efficiently.

2.3.1
Analytical representation of the immediate cost function

2.3.1.1
Convex combination

Because βt(et) is a piecewise linear function, it can be represented as a
convex combination of the discrete values: βt

et

 =
∑
k

µk

 β̂kt

êkt

 (2-6)

∑
k

µk = 1 (2-7)

2.3.1.2
Piecewise linear representation

A convex combination (figure 2.1) can always be transformed into a set
of hyperplanes (figure 2.2), and vice-versa. Each hyperplane of a given stage t
is represented as:

βlt = µ̂lte
l
t + ∆̂l

t,∀l ∈ L (2-8)
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Angular and linear coefficients are calculated by:

µ̂lt = (β̂l+1 − β̂l)
êl+1 − êl

,∀l ∈ L (2-9)

∆̂l
t = β̂l − µ̂ltêl,∀l ∈ L (2-10)

Figure 2.2: Immediate cost piecewise linear function

2.4
Approach 2: Lagrangian relaxation

The ICF curve 2-6 - 2-7 can be built much more efficiently if we take
advantage of the problem structure. We see in figure 2.3 that there is only one
coupling constraint in the problem (2-1 - 2-5) (constraint 2-2) , i.e. that has
variables from different time intervals.

Figure 2.3: Hydroelectric energy generation problem structure

This means that if we take the Lagrangean of that constraint,
λ(∑τ et,τ − et), the problem can be decomposed into T separate optimization
subproblems.
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βt,τ (λ) = Min
∑
j

cjgt,τ,j + λet,τ (2-11)

et,τ +
∑
j

gt,τ,j = δ̂sτ,t (2-12)

gt,τ,j ≤ gj ∀j ∈ J (2-13)
et,τ ≤ e (2-14)

Note that subproblem (2-11 - 2-14) can be interpreted as the optimal
operation of a thermal system with J+1 generators, where the extra generator,
with “operating cost” λ, is the hydro plant.

In the next sections, we will show that the combination of Lagrangian
relaxation and other transformations allows the calculation of βt(et) with a very
small computational effort. The algorithmic developments will be described in
three steps:

1. The piecewise linear function βt(et) can be calculated by solving J+1
Lagrange operation problems, corresponding to the function breakpoints.

2. Each Lagrange operation problem can be decomposed into supply reli-
ability subproblems, which can be solved with simple arithmetic opera-
tions.

3. This decomposition also allows the calculation of βt(et) from the solution
of only two Lagrange problems, instead of J+1.

2.4.1
Calculation of the immediate cost function from the solution of Lagrange
operation problems

Suppose, without loss of generality, that the thermal plants are ordered
by increasing operating costs cj,∀j = 1, . . . , J . If we examine the Lagrangian
problem (2-11 - 2-14), it is easy to see that there are only J+1 different optimal
solutions, corresponding to the following ranges of values for the Lagrange
multiplier:

(1) λ < c1 ← hydro is the first to be dispatched
(2) c1 < λ < c2 ← hydro is dispatched after the first (cheapest) thermal
generator
(3) c1 < λ < c2 ← hydro is dispatched after the second thermal generator
...
(J+1) cJ < λ ← hydro is dispatched after all thermal generators.
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It is also interesting to observe that the exact value of λ in each range
does not matter for the construction of βt(et); only the position of the hydro
plant on the loading order of the generators is relevant.

As a consequence, we can construct βt(et) by solving (J+1) operating
problems for each time interval τ = 1, . . . , T . The procedure is implemented
as shown in 1

Algorithm 1 Calculation of the immediate cost function from the solution of
Lagrange operation problems
1: for each hydro position in the loading order k = 1, . . . , J + 1 do
2: Let λ̂k = any value in the range (k) above.
3:

4: for each interval τ = 1, . . . , T do
5:

6: Solve the operation subproblem βt,τ (λ̂k) and calculate:

– The total thermal cost β̂kt,τ = ∑
j cj ĝ

k
t,τ,j (ˆoptimal solution).

– The optimal hydro generation êkt,τ

7: end for
8: Calculate the total thermal cost and hydro generation for the stage t:

– β̂k = ∑
τ β̂

k
t,τ

– êkt = ∑
τ ê

k
t,τ

9: end for

For instance, for λ = 7, we would obtain the immediate cost and
hydroelectric generation of hour 1 for the example problem by solving the
problem below:

Min 8g1 + 12g2 + 15g3 + 7e (2-15)
e+ g1 + g2 + g3 = 24 (2-16)

g1 ≤ 10 (2-17)
g2 ≤ 5 (2-18)
g3 ≤ 20 (2-19)
e ≤ 10 (2-20)

This problem was solved with the aid of a commercial optimization
package. The optimal solution is presented in table 2.3
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Obj Func β̂kt,1 e g1 g2 g3

198 128 10 10 4 0
Table 2.3: Optimal dispatch for the example optimization
problem

Where β̂kt,1 = 8ĝ1 + 12ĝ2 + 15ĝ3.
As in the previous case, βt(et) can be represented as a convex combination

of the discretized pairs [operating cost β̂kt ; hydro generation êkt ] resulting from
the above procedure or, equivalently, as the set of hyperplanes used in our
proposed formulation.

2.4.2
Decomposition of the immediate cost function into supply reliability
subproblems

Suppose the following thermal dispatch problem where, as assumed
above, the generators are ordered by increasing operation cost.

Min z =
∑
j

cjgj (2-21)

∑
j

gj = δ̂ (2-22)

gj ≤ gj ∀j ∈ J (2-23)

It is well known from the probabilistic production costing literature that
the least-cost operation problem (2-21 - 2-23) can be solved as a set of reliability
evaluation sub-problems:

1. Define δ0 = δ̂

2. Let δj represent the energy not supplied when the cheapest j generators
are loaded at their maximum capacity:

δj = Max(d−Gj, 0),∀j ∈ J (2-24)

Where Gj = ∑j
k=1 gk

3. It is easy to see that the power produced by each generator j at
the optimal solution of the thermal dispatch problem (2-21 - 2-23),
represented as g∗j , is given by the decrease in unserved energy after the
generator is loaded:

g∗j = δj−1 − δj, ∀j ∈ J (2-25)
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4. Finally, the optimal operation cost is given by:

z∗ =
∑
j

cjg
∗
j (2-26)

Let us consider the thermal generators and system load of the example
system. The optimization model for this example would be as shown in
equations (2-27 - 2-31).

Min z = 8g1 + 12g2 + 15g3 (2-27)
g1 + g2 + g3 = 24 (2-28)

g1 ≤ 10 (2-29)
g2 ≤ 5 (2-30)
g3 ≤ 20 (2-31)

This problem was solved with the aid of a commercial optimization
package. The optimal solution is presented in table 2.4

Obj Func g1 g2 g3

275 10 5 9
Table 2.4: Optimal dispatch for the example optimization
problem

Using the approach mentioned above, we will calculate the optimal
thermal dispatch for hour 1 of the example as follows:

1. δ0 = 24

2. We start dispatching the cheapest generator (T1) and update δ: δ1 =
Max (24 - 10 ,0) = 14.
Then we move to the second cheapest thermal plant (T2):
δ2 = Max (24 - 15 ,0) = 9.
Finally, we obtain δ3:
δ3 = Max (24 - 35 ,0) = 0.

3. Now, we calculate the generation of each thermal plant:
g∗1 = 24 - 14 = 10 MWh
g∗2 = 14 - 9 = 5 MWh
g∗3 = 9 - 0 = 9 MWh
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4. Finally, we obtain the optimal operation cost:
10(MWh) × 8($/MWh) + 5(MWh) × 12($/MWh) + 9(MWh) ×
15($/MWh) = 275$

In summary, steps 1-4 above allow us to solve a thermal dispatch with
simple arithmetic operations which, additionally, can be carried out in parallel.

2.4.3
Calculation of the immediate cost function from the solution of supply
reliability problems

Because the Lagrangian problem (2-11 - 2-14) is equivalent to a thermal
dispatch problem, the above methodology can be applied directly to the
calculation of βt(et):

Algorithm 2 Calculation of the immediate cost function from the solution of
supply reliability problems

for each hydro position in the loading order k = 1, . . . , J + 1 do
Let λ̂k = any value in the range (k) above.

for each interval τ = 1, . . . , T do

Solve the operation subproblem βt,τ (λ̂k) using the reliability decom-
position scheme (1)-(4) above and calculate the total thermal cost as:

β̂kt,τ =
∑
j 6=k

cj ĝ
k
t,τ,j (2-32)

Note that the kth generator was excluded from the summation 2-
32 because it corresponds to the hydro plant. The optimal hydro
generation is:

êkt,τ = ĝkt,τ,j (2-33)
end for
Calculate the total thermal cost and hydro generation for the stage t:

– β̂k = ∑
τ β̂

k
t,τ

– êkt = ∑
τ ê

k
t,τ

end for

As in the previous case, βt(et) is represented as a convex com-
bination of the the discretized pairs [operating cost β̂kt ; hydro generation êkt ]: βt

et

 =
∑
k

µk

 β̂kt

êkt
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Below, we present the calculation of the immediate cost points given λ
in different ranges:

λ = 7

Hour Obj Func βt,τ (λ̂k) e g1 g2 g3

1 198 128 10 10 4 0
2 297 277 10 10 5 5.8
3 77.36 7.36 10 0.92 0 0

total 572.36 362.36 30 20.92 9 5.8
Table 2.5: Optimal dispatch (λ = 7)

Which is exactly the same solution we found by solving the optimization
problem (table 2.4)

λ = 10

Hour Obj Func βt,τ (λ̂k) e g1 g2 g3

1 198 128 10 10 4 0
2 297 227 10 10 5 5.8
3 86.44 80 0.92 10 0 0

total 581.44 435 20.92 30 9 5.8
Table 2.6: Optimal dispatch (λ = 10)

λ = 13

Hour Obj Func βt,τ (λ̂k) e g1 g2 g3

1 203 140 9 10 5 0
2 297 227 10 10 5 5.8
3 91.04 91.04 0 10 0.92 0

total 591.04 458.04 19 30 10.92 5.8
Table 2.7: Optimal dispatch (λ = 13)

λ = 20
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Hour Obj Func βt,τ (λ̂k) e g1 g2 g3

1 275 275 0 10 5 9
2 377 377 0 10 5 15.8
3 91.04 91.04 0 10 0.92 0

total 743.04 743.04 0 30 10.92 24.8
Table 2.8: Optimal dispatch (λ = 20)

βt(et) can be calculated by evaluating only two positions of the hydro plant
in the loading order, first (k = 1) and last (k = J + 1)

Next, we show how to obtain the intermediate points of the immediate
cost function.

2.4.4
Calculation of intermediate points of the immediate cost function from
the two extreme points

Let ĝkt,j and êkt represent respectively the energy produced by each thermal
generator j and by the hydro plant in stage t:

– ĝkt,j = ∑
τ ĝ

k
t,τ,j,∀t ∈ T , j ∈ J

– êkt = ∑
τ ê

k
t,τ , ∀t ∈ T

Suppose now that we want to solve the operating problem for the
case with the hydro plant in position k = 3, i.e. it is dispatched after
thermal plants 1 and 2. We already have calculated the optimal dispatch,
presented in table 2.7.

We now show how the problem solution ĝ3
t,j and ê3

t can be obtained from
the solutions for k = 1 (hydro first) and k = J+1 (hydro last):

1. For thermal plants 1 and 2 (loaded before the hydro in this example),
results come from the case where hydro is loaded last (k = J+1) ĝ3

t,1 = ĝJ+1
t,1

ĝ3
t,2 = ĝJ+1

t,2

 (2-34)

By looking at table 2.8, we see that the generation of thermal
plants 1 and 2 for the first hour should be 10 MWh and 5 MWh
respectively. If we compare to the results of table 2.7, we see that
in fact the generations are the same.
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2. For thermal plants 3 to J (loaded after the hydro), results come
from the case where hydro is loaded first (k = 1)

ĝ3
t,3 = ĝ1

t,3

. . .

ĝ3
t,J = ĝ1

t,J

 (2-35)

In other words, if we compare the generations of thermal plant 3 in
both tables 2.5 and 2.7 we see that they are the same, 0 MWh.

3. Finally, the hydro generation is obtained subtracting the total
thermal generation from the load:

ê3
t = dt −

∑
j

ĝ3
t,j (2-36)

The total hydroelectric generation should be 24 - 10 - 5 - 0 = 9
MWh. This is the same value found in table 2.7

The reason for expression 2-34 is that the generation of a given plant
does not depend on the loading of the plants that come afterwards. In other
words, the generation of thermal plants 1 and 2 is the same for the case where
the hydro is loaded in position 3; or in position 4; and so on, until the last
position, J+1, which is the one we had calculated.

In turn, expression 2-35 can be understood by looking at equation 2-25:
the generation of a given plant is given by the difference between the unserved
energy for the total generation capacity loaded before and after that plant is
included. For our example, this means that the generation of thermal plant
3 is the same for the loading orders H : T1 : T2 (which we have calculated);
T1 : H : T2; and T1 : T2 : H

Finally, total cost of dispatches which the hydroelectric plant is in an
intermediate position can be obtained as previously shown.

As in the previous cases, βt(et) can be represented as a convex combina-
tion of the discretized pairs [operating cost β̂kt ; hydro generation êkt ] resulting
from the above procedure or, equivalently, as the set of hyperplanes used in
our proposed formulation.

2.5
Extracting hourly results from the analytical ICF

Once the optimal solution of the one-stage operation problem using the
analytical ICF has been obtained, it is possible to extract the hourly production
of each plant, if desired.
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The reason is that, as seen in section 2.4.4, the calculation of βt(et) for
each position of the hydro in the loading order requires the energy produced
by each thermal plant in each time interval (otherwise, we would not be able to
calculate the total thermal operating cost). If this preprocessing information
is stored, the hourly operation of each plant at the optimal solution can be
obtained as a weighted combination of the hourly values for each segment of
βt(et) that is binding at the optimal solution.

For example, suppose that the optimal values of the convex weights are
λ∗3 (hydro is in the third position in the loading order) = 0.7 and λ∗4 = 0.3
(remember that ∑λ∗ = 1). The optimal generation of each thermal plant j
(plus the hydro, which as seen is represented as an additional "thermal" plant)
in the time interval τ , g∗t,τ,j, will be:

g∗t,τ,j = 0.7× ĝk(=3)
t,τ,j + 0.3× ĝk(=4)

t,τ,j

Where ĝkt,τ,j is the (precalculated) generation of thermal plant j when the
hydro is in the kth position in the loading order.



3
Multiple hydro plant systems

For ease of presentation, we reproduce below the one-stage operation
problem with multiple hydro plants and analytical ICF (1-23 -1-29):

αt(v̂t) = Min βt + αt+1 (3-1)
vt+1,i = v̂t,i + ât,i − ut,i − νt,i +

∑
m∈Ui

(ut,m + νt,m) ∀i ∈ I (3-2)

vt+1,i ≤ vi ∀i ∈ I (3-3)
ut,i ≤ ui ∀i ∈ I (3-4)
et,i = ρiut,i ∀i ∈ I (3-5)
αt+1 ≥

∑
i

φ̂pt+1,i × vt+1,i + σ̂pt+1 ∀p ∈ P (3-6)

βt ≥
∑
i

µ̂lt,i × et,i + ∆̂l
t ∀l ∈ L (3-7)

Because we are dealing with multiple hydroelectric plants problems, the
ICF is now a multivariate piecewise linear function, βt(et,1, . . . , et,i, . . . , et,I).
In theory, the extension of the ICF methodology from one hydro plant to I
hydro plants is straigthforward: calculate the operating costs assuming that
each hydro is a dummy thermal plant which is first (and last) in the loading
order. Note, however, that we now have 2I combinations of loading positions:
all hydro first; I − 1 hydro plants first and one of them last; I − 2 hydro first
and two of them last; and so on.

One approach to reduce the computational effort due to the number of
combinations is to build βt(et) iteratively, using decomposition techniques ((10)
and (8)).

In this work, we propose to reduce computational effort based on the
optimality conditions of hydrothermal operation, mentioned previously: if
the hydro plants do not reach turbining limits within the stage, all hydro
opportunity costs at the optimal solution will be equal. In terms of the ICF
calculation, the optimality condition means that all hydro plants will be at
the same point in the loading order. In this case, the multivariate function
βt(et,1, . . . , et,i, . . . , et,I) can be replaced by a scalar function of the total hydro
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generation, βt(
∑
i et,i), as shown below.

αt(v̂t) = Min βt + αt+1 (3-8)
vt+1,i = v̂t,i + ât,i − ut,i − νt,i +

∑
m∈Ui

(ut,m + νt,m) ∀i ∈ I (3-9)

vt+1,i ≤ vi ∀i ∈ I (3-10)
ut,i ≤ ui ∀i ∈ I (3-11)
et =

∑
i

ρiut,i (3-12)

βt ≥ µ̂lt × et + ∆̂l
t ∀l ∈ L (3-13)

αt+1 ≥
∑
i

φ̂pt+1,i × vt+1,i + δ̂pt+1 ∀p ∈ P (3-14)

Note that the hydro plants in water balance equations 3-9 and the FCF
3-14 are still represented individually (multivariate functions); the aggregation
only applies to the ICF calculation. It is easy to see that the ICF calculation
procedure for problem (3-8 - 3-14) is very similar to the case with a single
reservoir. Next, we illustrate the application of the proposed analytical ICF
technique to the operation of Panama, which is part of Central America’s
Regional Electricity Market (MER, in Spanish).

3.1
Case Study

The Central America’s Regional Electricity Market (MER) is currently
composed of six countries: Panama, Costa Rica, Nicaragua, Honduras, El
Salvador and Guatemala. There is also an interconnection between Guatemala
and Mexico, and plans for an interconnection between Panama and Colombia.
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Figure 3.1: Central America’s Regional Electricity Market (MER)

Figure 3.2 shows the main characteristics of each country (installed
capacity and generation mix). We see that there is a wide mix of generation
technologies, with a historically strong hydro share and, more recently, a fast
insertion of wind, solar and biomass. The MER countries have used SDDP for
both operation and expansion planning, and with the entrance of renewables,
there is a great interest in having a stochastic policy calculation with hourly
resolution.
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Figure 3.2: Central America, Mexico and Colombia: installed capacity and
generation mix

We will illustrate the ICF calculation methodology for Panama and, in
the next chapter, we will carry out multi-country studies taking into account
the interconnection limits.

3.1.1
Panama

Figure 3.3 shows the main components of Panama’s power system.
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Figure 3.3: Panama’s power system. Source: (14)

The Panama system has 42 hydro plants, 22 thermal plants and
wind/solar renewable generation.

Figure 3.4 shows the loading curve (operating cost and cumulative
capacity) of Panama’s thermal plants.

Figure 3.4: Panama’s thermal plants: operating cost and cumulative installed
capacity in March/2016
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The figure 3.5 illustrate Panama’s hourly load (month of March/2016).

Figure 3.5: Panama hourly demand March/2016

3.1.2
Study description

The ICF calculation methodology was implemented in PSR’s SDDP
model (26), which is the official operations and planning software for the MER.
We calculated the stochastic operation policy twice: (i) standard SDDP with
hourly resolution (730 power balances in the one-stage operation problem);
and (ii) SDDP with the ICF scheme. Figure 3.6 shows the analytical ICF for
the month of March/2016 and one renewable scenario. As seen previously, the
number of breakpoints is J (number of thermal plants, 22 in Panama’s case)
+ 1 (the aggregated hydro generation).
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Figure 3.6: Panama case study: Analytical ICF for March/2016

The study horizon was two years (24 months), with 100 scenarios
(inflows and renewable generation) in SDDP’s forward simulation step and
30 conditioned scenarios ("openings") in the backward recursion step.

3.1.3
Computational results

The studies were run on an Amazon Cloud server with 32 processes.
Convergence was achieved in 8 iterations. As seen previously, this means that
the total number of one-stage problems solved was 8 (number of iterations) ×
100 (number of scenarios in the forward simulation) × 31 (number of backward
"openings" + 1) × 24 (number of stages) ' 600 thousand. Total execution time
with a standard hourly representation was 14 minutes; with the ICF, 3 seconds.
This corresponds to a speedup of 287 times.

3.1.4
Accuracy of the ICF approximation

As seen previously, the ICF calculation effort was reduced with the
assumption that all hydro plants have the same opportunity costs at the
optimal solution of each one-stage operation problem. The accuracy of this
assumption was verified by comparing the present value of the operation
cost for each of the 100 scenarios in the final probabilistic simulation (after
convergence has been achieved) of the ICF representation with the results of
the standard SDDP model (hourly power balances in each stage). Figure 3.7
shows these present values in increasing order.
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Figure 3.7: Present value of total operation cost along the study period (24
months)

The average cost difference was 0.01%, indicating that in this case the
ICF represents very accurately the system operation.

In the next chapter, we extend the ICF methodology for multiple regions
with power interchange limits.



4
ICF calculation algorithm for multi-area systems

In this section, we address the ICF calculation for systems with multiple
electrical areas, such as Brazil’s four regions (South, Southeast, North and
Northeast) and Central America’s six-country MER regional pool.

4.1
Multi-area operation problem

In the multi-area representation, the ICF βt(et) is extended to represent
the power flow constraints between areas in the hourly power balance. As a
consequence, the multi-area operation problem is very similar to the single-
area problem of chapter 3. The only difference is that the hydro generation is
now aggregated for each area r (equation 4-5).

αt(v̂t) = Min βt(et) + αt+1 (4-1)
vt+1,i = v̂t,i + ât,i − ut,i − νt,i +

∑
m∈Ui

(ut,m + νt,m) ∀i ∈ I (4-2)

vt+1,i ≤ vi ∀i ∈ I (4-3)
ut,i ≤ ui ∀i ∈ I (4-4)
et,r =

∑
i∈Ωr

ρiut,i r ∈ R (4-5)

αt+1 ≥
∑
i

φ̂pt+1,i × vt+1,i + σ̂pt+1 ← παpt,i ∀p ∈ P (4-6)

Where
r = 1, . . . , R indexes electrical areas
Ωr set of hydro plants in area r.

4.2
Multi-area ICF

In the multi-area case, βt(et) is a multivariate function of the hydro
generation in each area, {et,r, r = 1, . . . , R}. The ICF problem is formulated
as:
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βt(et) = Min
∑
τ

∑
j

cjgt,τ,j (4-7)

∑
τ

et,τ,r = et,r ∀r ∈ R (4-8)

et,τ,r ≤ er ∀τ ∈ T , r ∈ R (4-9)
et,τ,r +

∑
j∈Θr

gt,τ,j +
∑
q 6=r

(f q,rt,τ − f r,qt,τ ) = δ̂rt,τ ∀τ ∈ T , r ∈ R (4-10)

gt,τ,j ≤ gj ∀τ ∈ T , j ∈ J (4-11)
f q,rt,τ ≤ f

q,r ∀τ ∈ T (4-12)
f r,qt,τ ≤ f

r,q ∀τ ∈ T (4-13)

Where:
δ̂rt,τ residual load (demand – renewables) of area r
f q,rt,τ power flow from area q to area r
f
q,r maximum flow from area q to area r

Θr set of thermal plants in area r.

We see that (4-7 - 4-13) is a linear programming problem in which,
again, et,r appears only on the right hand side. As a consequence, βt(et) is
a multivariate piecewise linear function of the hydro generation in each area:

βt ≥
∑
r

µ̂lt,r × et,r + ∆̂l
t, ∀l ∈ L (4-14)

We now show how to pre-calculate the hyperplanes of expression 4-14

4.3
Disaggregation of the ICF problem into hourly subproblems

We see that the multi-area ICF (4-7 - 4-13) has the same structure as the
single area problem, i.e. the only coupling constraints are those of equation 4-8
(disaggregation of the hydro generation for the stage, et,r, into hourly values
et,τ,r). Therefore, we can apply the same Lagrangian scheme used for the single-
area problem to decompose the problem into T separate hourly multi-area
operation subproblems.

Also similarly to the single-area scheme, the hydro generation in each
hourly subproblem is represented as a thermal plant whose “operating cost”
and, thus, its position in the loading order, is given by the value of the Lagrange
multiplier associated with constraint 4-8.

4.4
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Solving the hourly subproblem for the extreme hydro positions

In the previous chapter, we showed that, although the ICF function had
J linear segments, it could be calculated by solving the operation problem only
twice: (i) with hydro first in the loading order; and (ii) with hydro last. The
operating costs of intermediate loading positions (hydro second; third etc.) are
then calculated as combinations of solutions (i) and (ii).

In the multi-area problem, the same logic applies. However, the number of
hydro loading positions is now 2R: hydro of all regions first; all hydro last; hydro
of R− 1 regions first, the other last; and son on. We show in the next sections
that the computational effort of solving these problems can be substantially
reduced if we apply concepts from network flow theory. Initially, we show that
the hourly subproblem is a min-cost network flow.

4.5
Example

We will apply the main concepts of this chapter using another small

•

example. Let us represent two areas: A and B. Area A is the one represented in
chapter 2. Interconnection capacity from area A to area B is 15 MW and from
area B to A is 20 MW. Let us assume that area B has a generation capacity
of 35 MW, provided by one thermal plant (T4) with cost of 10 $/MWh and a
residual (demand – renewable production) hourly load specified in table 4.1.

Hour Load (H)

1 30
2 20
3 24

Table 4.1: Load used in example for area B

4.6
The hourly subproblems are min-cost network flows

Given a set of Lagrange multipliers λrt , the operating subproblem of hour
τ of stage t is:
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Min
∑
j

cjgt,τ,j +
∑
r

λrtet,τ,r (4-15)

et,τ,r ≤ er ∀r ∈ R (4-16)
et,τ,r +

∑
j∈Θr

gt,τ,j +
∑
q 6=r

(f q,rt,τ − f r,qt,τ ) = σ̂rt,τ ∀r ∈ R (4-17)

gt,τ,j ≤ gj ∀τ ∈ T , j ∈ J (4-18)
f q,rt,τ ≤ f

q,r (4-19)
f r,qt,τ ≤ f

r,q (4-20)

The hourly problem (4-15 - 4-20) is a special type of linear programming,
known as minimum cost network flow.

For the first hour of the example, the network flow optimization problem
(for λ1 = 7)is represented as:

Min 8g1 + 12g2 + 15g3 + 10g4 + 7e1

e1 ≤ 10
e1 + g1 + g2 + g3 + (f 2,1 − f 1,2) = 24

g4 + (f 1,2 − f 2,1) = 30
g1 ≤ 10
g2 ≤ 5
g3 ≤ 20
g4 ≤ 35

f 1,2 ≤ 15
f 2,1 ≤ 20

Next, we show that min-cost network flow problem can be decomposed
into J +R multi-area reliability evaluation problems, similarly to the develop-
ments of chapter 3.

4.7
Solving min cost problems by max flows in a network

The same problem presented in the next section can also be represented
as a graph, as shown in figure 4.1
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Figure 4.1: Resulting graph for example

Now, in order to find the dispatch we need to find the maximum flow that
can be transferred from node So (Source) to node Si (Sink). As it can be seen
from figure 4.1 it is very intuitive to consider that the maximum flow between
those nodes cannot exceed the capacities of the arcs So->A and So->B, which
are the generation capacities of each area, once there are no other arcs from
where energy could flow from node So. Also, the maximum flow cannot exceed
the capacities of arcs A->Si and B->Si, which represent the demand of each
area. Finally, it is clear that the flow between areas cannot exceed the network
capacity and also needs to be taken into account (arcs A->B and B->A).

Finding the maximum flow of the network, however, does not mean
finding the least cost dispatch. Taking advantage on the special structure of
our problem, however, we can iteratively add generators (increasing So->A
and So->B arcs’ capacities) to the graph following merit dispatch order and
solve the maximum flow problem. By doing this, we would be able to obtain
the optimal dispatch and costs.

4.8
Solving max-flow problems by min cuts

Formally, we can obtain the maximum flow from a graph by solving
an optimization problem that aims to maximize the flow between nodes So
and Si subject to arcs’ capacities. It is also proved (22) that the optimal flow
optimization problem is strongly related to the cut minimization problem. One
of the greatest advantages of finding the minimum cut in the graph instead
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of calculating its maximum flow is that, in small problems, cuts can be easily
enumerated.

A cut is characterized by the minimum set or arcs that isolate node So
from node Si. That is, if we were to remove those arcs, there would be no flow
from node So to node Si. In this example, there are four cuts. The first two
cuts are quite obvious: cut 1 is composed by arcs {So->A,So->B} and cut 2 by
arcs {A->Si,B->Si}. The last two are less obvious: cut 3 is composed by arcs
{So->A,B->A,B->Si} lastly, cut 4 is composed by arcs So->B,A->B,A->Si.
All cuts are demonstrated graphically in figure 4.2.

Figure 4.2: Example graph’s cuts

Finally, we show that the max-flow problems can be solved more effi-
ciently as the direct calculation of the maximum value of a set of linear con-
straints, similar to the FCF and ICF hyperplanes of the operation problem.
This is achieved through the application of the max flow-min cut theorem,
described next. Table 4.2 shows the cuts’ values for this example.

CUT Value (MW)

1 80
2 54
3 95
4 74

Table 4.2: Example graph cut values
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The minimum cut value for this example would therefore be of 54 MW.
As shown, instead of solving the maximum flow optimization problem, we can
simply enumerate all cuts in the graph and find the minimum cut. With the
concepts of the previous sections, we finally arrived at the proposed solution
algorithm for the calculation of βt(et), presented in the following section.

4.9
Proposed algorithm

Algorithm 3 Calculation of the immediate cost function using Min-Cut
approach
1: Set initial graph with generation capacity arcs with capacity equal to zero

and obtain graph’s cuts
2: for every combination of first/last loading order positions for the regional

hydro generation do
3: for every hour do
4: for every generator in dispatch order do
5: Add the cheapest possible generator, set resulting graph
6: Obtain graph’s minimum cut
7: The current plant generation will be obtained by subtracting the

previous minimum cut value of the current minimum cut value
8: end for
9: Calculate total dispatch cost

10: end for
11: Aggregate generation values and cost for all stage hours
12: end for
13: Obtain the remaining dispatches using the previously calculated dispatches

Now let us apply the algorithm to our small system. We already exempli-
fied the cuts in this graph, as shown in figure 4.2. As there is only one region
that has a hydroelectric plant (area A), we only need to perform calculations
twice, considering the hydroelectric in first and last in the dispatch. Consider-
ing it to be in the first position, for the first hour, we would need to perform
the following calculations:

1. Add the hydroelectric plant to the graph and obtain its minimum cut:
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Figure 4.3: Resulting graph for example step 1

The minimum cut So->A, So->B in this case is 10. As this is the first
generator, its total generation is exactly the minimum cut value: 10 MW.

2. Add the cheapest thermal plant (T1) to the graph and obtain its
minimum cut:

Figure 4.4: Resulting graph for example step 2

The minimum cut So->A, So->B in this case is 20. The total generation
of thermal plant T1 is, therefore is 20 - 10 = 10 MWh.
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3. Add the second cheapest thermal plant (T4) to the graph and obtain its
minimum cut:

Figure 4.5: Resulting graph for example step 3

The minimum cut A->Si, B->Si in this case is 54. The total generation
of thermal plant T4 is, therefore is 54 - 20 = 34 MWh.

4. As the total generation is equal to the demand of both areas, we know
that the generation of all other thermal plants is zero. The total dispatch
cost for hour 1 is: 10(MWh)×8($/MWh)+34(MWh)×10($/MWh) =
420 $

After performing this calculation for every single stage hour, we then
aggregate the values of all hours to obtain ICF points.

4.10
Creating ICF hyperplanes

As seen in the previous chapters, the algorithm above produces “vertices”,
i.e. vectors of total operation cost and hydro generation that correspond to
“breakpoints” of the piecewise linear function. The ICF is then represented as
a convex combination of those vertices:

βt

et,j

. . .

et,j

 =
∑
l

λl


β̂lt

ê1l
t

. . .

êRl
t

 (4-21)
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The next, and final step, of the proposed scheme is to move from the
“vertex” to the “hyperplane” representation of equation 4-14. In the single
region case, as seen in section 2.3.1.2, the transformation is geometrically
obvious, and straightforward. For the multivariate case, however, there is no
direct conversion scheme. We then applied a convex hull generation algorithm,
described next.

4.11
Transformation of vertices into hyperplanes using convex hulls

The Qhull project (29) implementation relies on Quickhull algorithm (5)
and has achieved high reliability and performance and have actually been used
by MATLAB and Python’s SciPy (28) as default convex hull generators. There
are several other convex hull algorithms, such as(13), (1) and (2).(3) performs
an evaluation on the efficiency of several convex hull algorithms.

In this work, we used Python’s Qhull library (28) to perform the conver-
sion between vertex representation and hyperplane representation. Figure 4.6
shows an example of immediate cost plan set for a case with 2 electrical areas.

Figure 4.6: 2 Area example of immediate cost function. Horizontal axis rep-
resent total hydroelectric generation of each area and vertical axis represents
total immediate costs.
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(21) proposes an upper bound limit to the number of hyperplanes that
will be created given the number of vertices (equation 4-22).

fd =
(
n−

⌊
d+1

2

⌋
n− d

)
+
(
n−

⌊
d+2

2

⌋
n− d

)
(4-22)

Where:
n is the number of vertices
d is the number of dimensions of the vertices

After transforming the points into hyperplanes, we can use the same
algorithm used to reduce the number of future cost cuts inserted in the
problem. That is, as mentioned before, we can solve the problem iteratively
inserting new cuts as they are violated in the previous iterations.

4.12
Case studies

After the immediate cost plans are finally calculated, we need to insert
them in the optimization model. In this chapter, we will discuss the results
obtained by using the immediate cost approach in SDDP in multi-area real
cases.

The algorithm used to calculate the immediate cost function was pro-
grammed in Fortran 77 and the calculation time was irrelevant. Even though,
once this algorithm can be implemented in GPUs, the processing time of the
immediate cost function in Fortran 77 is not relevant to this work. In the next
sections, we will present 2 study cases. The first one comprehends the effects
of using the immediate cost function in a 2-area system: Panama and Costa
Rica. The second, consists in evaluating its performance on a 3 area system
(Panama, Costa Rica and Nicaragua).

All simulations performed were 2 years long (monthly stages), includ-
ing the years of 2015 and 2016. Also, 100 inflow scenarios (forwards) were
considered.

We will compare optimal costs obtained in SDDP run of an hourly prob-
lem equations(1-1 - 1-10) and a problem using the ICF hyperplanes equa-
tions(3-8 - 3-14). Cut relaxation was used for both FCF and ICF cuts. Finally,
we will present a comparison between computational times. Simulations were
performed on a computer with the following configuration: 60GB of RAM
memory, 32 cores and frequency of 2.8 GHz. SDDP runs were performed in
parallel, using 7 processors.
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4.13
Panama and Costa Rica system

Costa Rica area has 36 hydroelectric plants and 12 thermal plants. As
there are in total 34 thermal plants and 2 areas, the total number of possible
hydroelectric dispatch combinations is 1,225. Using the upper bound formula
presented before (equation 4-22), there would be, at maximum, a total of 2,446
hyperplanes to be considered in the model. As we eliminated redundant planes,
for this specific case, around 600 hyperplanes were considered.

A cost comparison between the ICF and hourly problems can be seen in
figure 4.7.

Figure 4.7: Comparison of total costs per scenario between hourly and ICF
representation for Panama and Costa Rica system

The average percentage of cost difference between both resolutions was
0.05%. The total time speed up of the ICF solution when compared to the
hourly representation was of 317 times.

4.14
Panama, Costa Rica and Nicaragua system

Nicaragua area has 5 hydroelectric plants and 26 thermal plants. In total,
there are 60 thermal plants in the system and a total of 226,981 different
hydroelectric dispatch position combinations. Using the upper bound formula
presented before (equation 4-22), there would be, at maximum, in the order
of 1010, hyperplanes to be considered in the model. However, for this special
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case, only 20,000 hyperplanes were created. Total costs per scenario from both
hourly and ICF executions are shown in figure 4.8.

Figure 4.8: Comparison of total costs per scenario between hourly and ICF
problem for Panama, Costa Rica and Nicaragua system

The average percentage of cost difference between both resolutions was
0.61%. The total time speed up of the ICF solution when compared to the
hourly representation was of 434 times.

4.15
Time Comparison

From the previous sections, it was possible to see that the immediate
cost function approach resulted in very similar optimal costs when compared
to the hourly model. In this section we will compare computational times of
both approaches.

In figure 4.9, we see the total speedup when comparing the hourly model
with the ICF model in all cases. In average, the ICF approach is 346 times
faster than the hourly representation.
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Figure 4.9: Total speedup of the ICF problem for all cases



5
Conclusions and future work

5.1
Conclusion

With the penetration of renewable energy sources in the energy market,
there has been an increase in the uncertainty of energy generation in small time
frames. Renewable generation sources such as solar and wind power present
volatile generation during the day. The representation of such variations is
crucial, especially to countries without hydroelectric power, which is capable
to adjust to these fluctuations almost immediately. In this scenario, hourly (or
sub-hourly) representation in operation problems became very important.

In this work, we demonstrated that using the immediate cost function
is much faster than solving the hourly problem and yet, it is capable of
reproducing the latter optimal costs. We also presented an algorithm to obtain
this function previously to the execution of the optimization itself. As the
algorithm can be performed in parallel and using GPUs, executing it should
little time.

The immediate cost function has several applications when solving op-
eration problems. In SDDP, it enables hourly resolution during policy phase,
which may be computationally intractable when using hourly representation
variables depending on the size of the problem. In addition to that, it is also
possible to represent batteries when using this approach, which will be crucial
to handle renewable source energy generation intermittence.

5.2
Future work

5.2.1
Run-of-river hydroelectric plants and batteries

Many possible future implementations are compatible with the ideas
presented in this work. First, even in the hour disaggregation model, we did
not use hourly water balance constraints. That is because the hydroelectric
plants considered in this work are able to regulate themselves within the stage
period, which is, in this work, a month.
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Obviously, it is not always the case. Many hydroelectric plants have small
reservoirs and, therefore, are not capable of regulating themselves, even for a
whole week. Fortunately, there is still a way to consider this type of regulatory
constraints implicitly in the immediate cost function. Let us consider a single
area system 3-hour operation problem. As mentioned before, such problem can
be represented as a minimum cut graph problem. In the previous approach,
we would find the minimum graph cut for each hour, in order to obtain the
immediate cost function. However, in this case, the system has exactly one
hydroelectric plant that has little regulatory capacity. It is intuitive that, if
there is a plant with some regulatory capacity between hours, then hourly
graphs would be somehow connected, as energy can be passed from one hour
to another. An example of the resulting graph is given in figure 5.1.

Figure 5.1: Resulting system graph when representing hydroelectric plants with
little regulation capacity

In figure 5.1 black arcs represent capacity and demand arcs, explained
previously. Lower nodes, called "Small res.", represent the hydroelectric plant
with small regulation capacity in each hour. Blue arcs represent the amount
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of inflow energy of the hydroelectric plant in each hour and red arcs represent
the maximum stored energy (volume) that can flow from one hour to another.
Yellow arcs represent the maximum generation of the hydroelectric and lastly,
green arc assures that initial energy volume has to be equal to the final stage
volume.

In addition to that, using the same approach proposed for hydro plants
that have little regulation information, it is also possible to model batteries.
The result for one single battery is shown in figure 5.2.

Figure 5.2: Resulting system graph when representing batteries

Note that there are two basic differences when comparing figure 5.1 with
figure 5.2. First, there are no blue arcs in this graph. As batteries are only
capable of storing previously generated energy, the only way it can receive
energy is from the system itself. This leads to the second difference: there
are new arcs (presented in pink) that transfer energy from the system to the
battery. They represent the maximum energy that can be transferred to the
battery in an hour. Red arcs still represent maximum storage and yellow arcs
represent maximum energy transferring from the battery to the system.

5.2.2
Multiple scenario representation

As we expressed at the beginning of this work, hourly operation repre-
sentation becomes necessary because of renewable generations variability. We
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have shown that we can represent hourly operation using the immediate cost
function but we did not show how we would represent renewable generation
variability. As SDDP has several forward scenarios (see appendix B), it would
be possible to pre-calculate the ICF for each renewable energy scenario and
use them separately for each forward scenario. Another option would be as
follows:

Let us assume that we want to represent S possible renewable generation
scenarios. We already know how to calculate the immediate cost points for
each scenario. We calculate the immediate cost points of all L hydroelectric
dispatch positions using the residual demand. That is, for each scenario, we
would have different residual demands to begin with. After the calculation,
we would obtain the immediate cost points for every scenario (s) and every
hydroelectric dispatch position (l):

βls
els

 (5-1)

Now, we assemble the immediate cost points so that we have, in the same
vector, points from every scenario calculated with the hydroelectric plant in
the same dispatch position:


e1

1

e1
2
...
e1
S




e2

1

e2
2
...
e2
S

 · · ·

eL1

eL2
...
eLS

 (5-2)

Each vector would have a correspondent β
l

, which would be the average
of the βls of all s scenarios:

β
l =

∑
s β

l
s

S
(5-3)

The resulting operation optimization problem would be as shown below:
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αt(v̂t) = min
λ
β + 1

S

∑
s

αst+1(vst+1) (5-4)

β = λ1β
1 + λ2β

2
. . .+ λLβ

L (5-5)
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+ . . . . + λL


eL1

eL2
...
eLS

 (5-6)

vst+1 = v̂t + ast −
est
ρ
− wst ,∀s ∈ S (5-7)

vst+1 ≤ v,∀s ∈ S (5-8)
est
ρ
≤ u,∀s ∈ S (5-9)∑

l

λl = 1 (5-10)

αst+1 ≥ âpt+1v
s
t+1 + b̂pt+1, ∀p ∈ P, s ∈ S (5-11)

Where v̂t is randomly sampled from the previous stage t − 1 scenarios’
final volumes (vst ).

As it can be seen in the model above, our only optimization variables are
the λ. In other words, we are in fact choosing the hydroelectric plant’s optimal
dispatch position instead of optimal generation. Even further, we have different
energy generations for every scenario s (es) as, depending on the amount of
renewable generated energy, clearly the hydroelectric plant would generate
more or less, regardless of its dispatch position.

Finally, it is clear that this scenario approach can be extended for several
other different possible sources of variability, such as demand and inflows. As
mentioned before, we calculate the immediate cost considering hydroelectric
plants with little storage capacity. As state previously, arcs connecting the
source node to the hydroelectric plant (blue arc shown in figure 5.1) represent
the amount of inflow energy of the plant. As inflows are also uncertain, we can
use this approach to represent its variability.

5.2.3
Obtaining hourly results and marginal costs

5.2.3.1
Obtaining hourly generation variables and costs

As it was seen in this work, the optimization problem that uses the imme-
diate cost function does not have hourly variables. If we wish to obtain them,
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we need to somehow disaggregate stage results into hourly ones. Desaggregat-
ing thermal generation is very easy, once in the proposed hourly model, as we
do not consider thermal plant’s typical constraints such as ramp and startup
constraints, and, therefore, the generation of one hour does not depend on the
previous hour generation.

In order to obtain the desaggregated thermal generation, we only need
to recover the optimal position variable from the operation model. Then, for
every stage, we perform the following calculation:

g∗jτ =
∑
l

λ∗l ĝ
l
jτ ,∀τ ∈ T , j ∈ J (5-12)

Where ĝljτ is the generation of plant j at hour τ when the hydroelectric
plant is in the lth position. This is a subproduct of the immediate cost function
pre-calculation.

As the piecewise linear (or hyperplane) representation does not involve
λl, its optimal value would have to be calculated. It is possible to obtain it
by finding which beta constraint (equation 4-14) are biding in the optimal
problem solution.

There is also a similar equation to obtain hydroelectric plants’ hourly
dispatches:

φi = ρiu
∗
i

e∗
, ∀i ∈ I (5-13)

e∗τ =
∑
l

λ∗l ê
l
τ ,∀τ ∈ T (5-14)

e∗iτ = φie
∗
τ ,∀i ∈ I, τ ∈ T (5-15)

Where e∗, λ∗l and u∗i are the optimal results obtained when solving the
immediate cost problem and êlτ is also a subproduct of the immediate cost
function calculation.

Clearly, as hydroelectric plants’ generation depend on the amount of
inflow of each hour and reservoir levels to generate, this approach does
not always achieve a feasible solution. Using optimization to disaggregate
hydroelectric hourly generations, although costlier computationally, always
attain feasible solutions.

First, we performed the hourly disaggregation of the thermal plants. After
that, since we have the total thermal generation and demand of each hour we
know how much hydroelectric energy should be produced for each hour. To do
so, we simply need to calculate:



Chapter 5. Conclusions and future work 70

e∗τ = dt −
∑
j

g∗tl,∀τ ∈ T (5-16)

After obtaining the total hydroelectric energy per hour, for a given stage
t, we need to solve the following optimization problem:

Min
∑
i

(vi,t+1 − v∗i,t+1)2 (5-17)

vi,t+1 = vi,t + ât,i +
∑
τ

−ui,τ − νi,τ +
∑
τ

∑
m∈Ui

(um,τ + νm,τ ),∀i ∈ I (5-18)

ui,τρi ≤ ei, ∀i ∈ I, τ ∈ T (5-19)
vi,t ≤ vimax,∀i ∈ I (5-20)
vi,t ≥ vimin, ∀i ∈ I (5-21)
ui,τ ≤ ui, ∀i ∈ I, τ ∈ T (5-22)∑
i

ei,τ = e∗τ , ∀τ ∈ T (5-23)

vi,t+1, ui,τ ≥ 0,∀i ∈ I, τ ∈ T (5-24)

Where v∗i,t+1 represent the optimal volume of hydroelectric plant i at the
end of the current stage t.

Note that future and immediate cost functions are not necessary in this
step, once the optimal hydroelectric generation is settled. The idea is to find a
feasible point considering the hydroelectric generation constraints. Any feasible
solution is acceptable as a disaggregation, as long as the hydroelectric final
volumes are maintained. This is important because the future cost obtained
in the execution of SDDP using the ICF is directly related to the final volume
retrieved in the same problem and changing final volumes might affect the
total cost of the solution.

5.2.3.2
Obtaining hourly marginal costs

One possible solution to address this matter would be to calculate the
problem’s optimal basis (and, therefore, dual variables’ optimal values) from
the optimal generation values calculated as shown in the previous section.
Unfortunately, this type of calculation can be time consuming.

However, obtaining hourly marginal costs is crucial when it comes
to decomposition schemes. For instance, it would be possible to create an
investment model in which the sub-problem uses the ICF approach.
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5.2.4
Computational challenges

As proposed before, the immediate cost representation has many great
advantages. Unfortunately, as we increase the complexity of the graphs that
need to be solved, the min cut problem grows exponentially. If we consider that
we would have one extra node for each run-of-river water plant or battery, in
addition to having to represent all stage hours in one single graph, we would
have a very difficult problem.

In this case, enumerating cuts in no longer an option. One possible way to
solve this problem is finding the graph’s maximum flow which, as shown before,
is equivalent to finding the minimum cut problem. The difference is that, in
the sections above, as we were dealing with small graphs, cut enumeration was
much more advantageous. However, as we increase the number of nodes and
arcs, solving the maximum flow problem becomes more and more reasonable.

There are several max flow implementations that promise to solve maxi-
mum flow problems quickly, in several different programming languages. Julia,
for instance, has an implementation based on Edmonds-Karp algorithm (17).
Matlab has 2 max flow algorithm implementations: Edmonds-Karp and Gold-
berg’s (18). R also relies on Goldberg’s algorithm to solve max flow problems.
There is also some literature on the implementation of such type of algorithms,
such as (16).
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6
Appendix A

6.1
SDP execution flow

SDP algorithm consists of enumerating all possible final volume states in
order to approximate the future cost function (FCF) as well as possible. The
algorithm is:

Algorithm 4 SDP algorithm
1: for each stage (last to first) do
2: for each volume state do
3: for each inflow scenario do
4: Calculate minimum total operation cost (future + immediate)
5: end for
6: Calculate the average minimum cost
7: end for
8: end for

Lastly, solve first stage problem considering the interpolated costs cal-
culated in stage 2. As enumerating every possible volume state is impossible,
we need to calculate future cost values for certain volume states and then
interpolate them to obtain the future cost for other values.

Still, this approach might be expensive computationally once many
problems will have to be solved so that the future cost function can be well
approximated. For a hundred different value discretization (and disregarding
inflow uncertainty), the number of problems solved per stage for a single
reservoir would be 100. For 2 reservoirs, as they do not need to maintain
same water levels would be 1002 and so on. More examples can be seen in
table 6.1.

# Reservoirs # Combinations
1 1001

2 1002 = 10.000
3 1003 = 1.000.000
4 1004 = 100.000.000
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5 1005 = 10.000.000.000
6 1006 = 1.000.000.000.000
50 10050 = 1 followed by 100 zeros

Table 6.1: Number of problems solved by number of
reservoirs
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Appendix B

7.1
SDDP execution flow

The figure 7.1 shows the main components of the operation problem for
stage t, scenario s:

1. SDDP state variables at the beginning of the stage (in this example,
initial storage v(t) and inflow along the stage, a(t));

2. reservoir storage balance equations, which determine the hydro turbined
outflow, u(t);

3. power balance equation, which determines the least-cost operation of
the thermal plants required to meet the residual load (after subtracting
hydro generation and renewable production). In the SDDP formulation,
the resulting operation cost is known as the immediate cost function
(ICF);

4. future cost functions (FCF) l = 1,. . . ,L of the SDDP state variables for
the next stage: the final storage v(t+1) and l = 1,. . . ,L conditioned inflow
scenarios a(t+1,l).

5. the objective function is to minimize the sum of immediate cost ICF and
the mean future cost 1

L

∑
l FCFl
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Figure 7.1: SDDP flowchart

In the following sections, SDDP algorithm phases will be described.

7.2
Backward recursion step

After the one-stage dispatch problem is solved, we generate a Benders
(6) cut to improve the future cost function of the previous stage.

Assuming that the FCF for the previous stage already has P hyperplanes,
the Benders cut will correspond to the (P + 1)th FCF constraint:

αlt ≥
∑
i

ϕ̂hP+1
t,i × vt,i +

∑
i

ϕ̂aP+1
t,i × alt,i + ϕ̂oP+1

t (7-1a)

The Benders cut coefficients ϕ̂hP+1
t,i , ϕ̂aP+1

t,i and ϕ̂oP+1
t are calculated from

a linear expansion of the optimal solution α∗t of the one-stage dispatch problem
(1-1 - 1-10) (section 1.2).

αt (vt, at) ≈ α∗t +
∑
i

∂αt
∂vt,i

×
(
vt,i − v̂st,i

)
+
∑
i

∂αt
∂at,i

×
(
at,i − âst,i

)
(7-1b)

The coefficient ϕ̂hP+1
t,i corresponds to ∂αt

∂vt,i
, which is the simplex multiplier

πht,i. In turn, ϕ̂aP+1
t,i corresponds to ∂αt

∂at,i
, calculated as: πht,i +

(
ρ̂t,i

σ̂t,i

)
× πat,i.

Finally, the constant term is obtained by adding all the constants of the linear
expansion:

ϕ̂oP+1
t = α∗t −

∑
i

ϕ̂hP+1
t,i v̂st,i −

∑
i

ϕ̂aP+1
t,i âst,i (7-1c)
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7.3
Forward simulation step

7.3.1
Upper bound calculation

In stage t, scenario s of the forward simulation step, we calculate the
immediate operation cost associated to optimal solution (indicated by the
superscript “*”).

zst =
∑
j

cj
∑
τ

g∗t,τ,j (7-2a)

As in the traditional SDDP formulation, the upper bound is calculated
as:

z = 1
S

∑
t

∑
s

zst (7-2b)

7.3.2
Inflow vector for stage t + 1. scenario s

We also calculate in the forward simulation step the inflow scenario vector
for the next stage t+ 1:

{
âst+1,i, i = 1, . . . , I

}
. This is done by sampling from

the expression for the conditioned inflows, equation 7-2c:

(
alt+1,i − µ̂t+1,i

)
σ̂t+1,i

= ρ̂t,i×

(
âst,i − µ̂t,i

)
σ̂t,i

+
√

1− ρ̂2
t,i×ξlt,i ∀l = 1, . . . , L; ∀i = 1, . . . , I

(7-2c)
Basically, ŝ is uniformily sampled from the set {1, . . . , L}, and the

inflows
{
âŝti, i = 1, . . . , I

}
are calculated for the corresponding innovation

vector
{
ξ̂ŝt,i, i = 1, . . . , I

}
. Note that the entire innovation vector has to be

used in order to preserve the spatial correlation.

(
aŝt+1,i − µ̂t+1,i

)
σ̂t+1,i

= ρ̂t,i ×

(
âst,i − µ̂t,i

)
σ̂t,i

+
√

1− ρ̂2
t,i × ξ̂ŝt,i ∀i = 1, . . . , I

(7-2d)

Further informations can be obtained in (26).
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7.3.3
SDDP parallel execution

Currently, SDDP parallelization is performed considering time syn-
chronicity. All figures in this section were extracted from (27). Figure 7.2 illus-
trates how forward phase is parallelized. Each forward scenario is solved by a
single processor until every scenario is solved for a certain stage t. After that,
stage t+1 scenarios start to be solved.

Figure 7.2: SDDP forward step parallelization

Figure 7.3 illustrates how backward phase is parallelized. All backward
scenarios from a certain stage t are solved by the same process. After all
backwards from stage t are solved, stage t-1 scenarios start to be solved.

Figure 7.3: SDDP backward step parallelization
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8.1
Proof of equality between hydro opportunity costs

Let us consider the following dispatch optimization problem:

αt(v̂t) = Min
∑
j

cjgt,j + αt+1(vt+1) (8-1)

∑
i

et,i +
∑
j

gt,j = δ̂t ← πdt (8-2)

et,i = ρiut,i ← πet,i
∀i ∈ I (8-3)

vt+1,i = v̂t,i + ât,i − ut,i − νt,i +
∑
m∈Ui

(ut,m + νt,m) ← πht,i
∀i ∈ I (8-4)

gt,j ≤ gj ← πgt,j
∀j ∈ J (8-5)

vt+1,i ≤ vi ← πvt,i
∀i ∈ I (8-6)

ut,i ≤ ui ← πut,i
∀i ∈ I (8-7)

αt+1 ≥
∑
i

φ̂pt+1,i × vt+1,i + σ̂pt+1 ← πct,p ∀p ∈ P (8-8)

Where variable et,i is unbounded and all other variables are greater or
equal to zero.

The dual constraint related to et,i (considering that the variable is
unbounded) is:

πet,i
+ πdt = 0,∀i ∈ I (8-9)

The dual constraint related to ut,i is:

−ρiπet,i
+ πht,i

− πht,k
+ πut,i

≤ 0,∀i ∈ I (8-10)

Where πht,k
is the dual variable associated with the water balance

constraint of the downstream plant of hydro i (hydro k)
On the other hand, if we consider ut,i > 0, by the complementary

slackness condition, we know that:

−ρiπet,i
+ πht,i

− πht,k
+ πut,i

= 0,∀i ∈ I (8-11)
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If we consider that no hydroelectric plant is turbined at its maximum
capacity (ut,i < ui, that is, πut,i

= 0) then:

πet,i
=
πht,i
− πht,k

ρi
,∀i ∈ I (8-12)

Which is exactly the formula of the hydroelectric opportunity cost. In
other words, if the hydroelectric plants do not hit turbine limits, i.e. do
not turbine at all or turbine at its maximum capacity, we know that all
hydroelectric opportunity costs are equal.
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