HERA

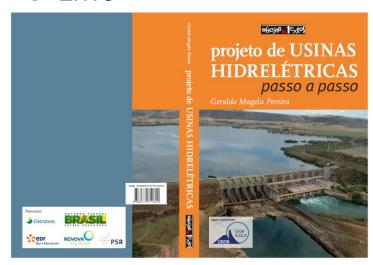
SISTEMA DE APOIO À DECISÃO SOBRE SELEÇÃO DE INVENTÁRIOS HIDRELÉTRICOS

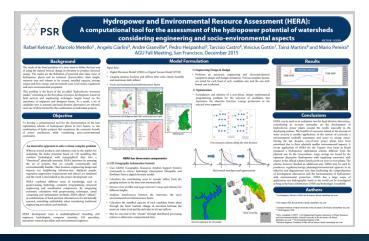
1º Workshop de Inventários Hidrelétricos Participativos ANEEL, 20 de setembro de 2018

Temário

- Visão geral
- Engenharia
 - Geração de alternativas
 - Dimensionamento
 - Cálculo de volumes & orçamento
 - Modelagem 3D de Arranjos
- Meio Ambiente
 - AAI & Blueprint de conservação
 - Métricas e restrições socioambientais
- Estudo de caso
- Conclusões

P&D ANEEL com EDF




① Relatório final do P&D

② Livro

③ Poster AGU Annual Meeting

P&D ANEEL com EDF

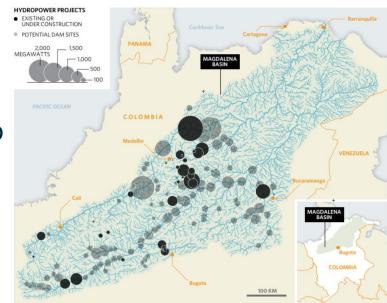
④ Prêmio Inovação

Equipe

PSR:

- Rafael Kelman
- Tarcisio Castro
- Marcelo Metello
- Luiz Rodolpho Albuquerque
- Tainá Martins
- Felipe Cruz
- André Granville

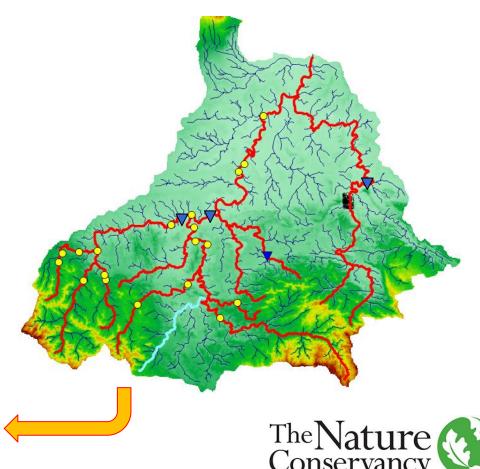
TNC:


- Edenise Garcia
- Pedro Bara
- Paulo Petry
- Leonardo Sotomayor
- Sidney Rodrigues
- David Harrison
- Justus Raepple

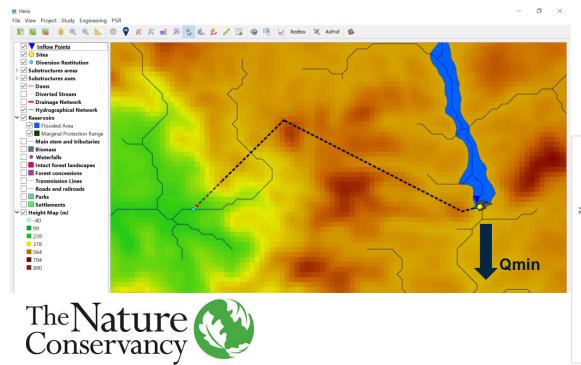
Magdalena (Colômbia)

- Principal bacia hidrográfica da Colômbia,
 concentra a maior parte da população e do
 PIB do país, além do potencial hidroelétrico
- HERA usado em estudo de alternativas de divisão de quedas considerando
 - (1) "Business as Usual" (regra atual)
 - (2) Definição de alternativas com otimização para a bacia hidrográfica
 - (3) Otimização por bacia incorporando riscos de atrasos e sobrecustos dos projetos a partir de um indicador de sua complexidade socioambiental (integração do HERA com módulo financeiro OptFolio)

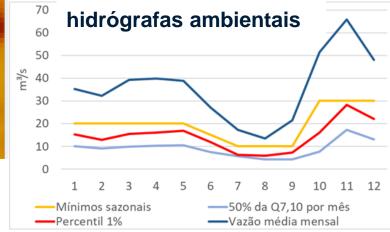
Coatzacoalcos (México)



► Trabalho em curso com apoio do BID, TNC, CFE, Universidade de Guadalajara e agencias governamentais mexicanas

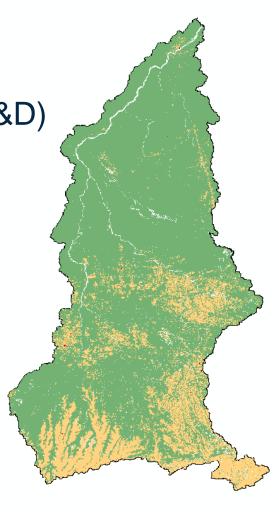



Mbé, Komo & Abanga (Gabão)



- Avaliação de potencial hidroelétrico em três bacias hidrográficas no Gabão
- Projeto de transposição de bacias: estudo de alternativas para UHE Ngoulmendjim considerando varias hidrógrafas ambientais

Juruena (Brasil)

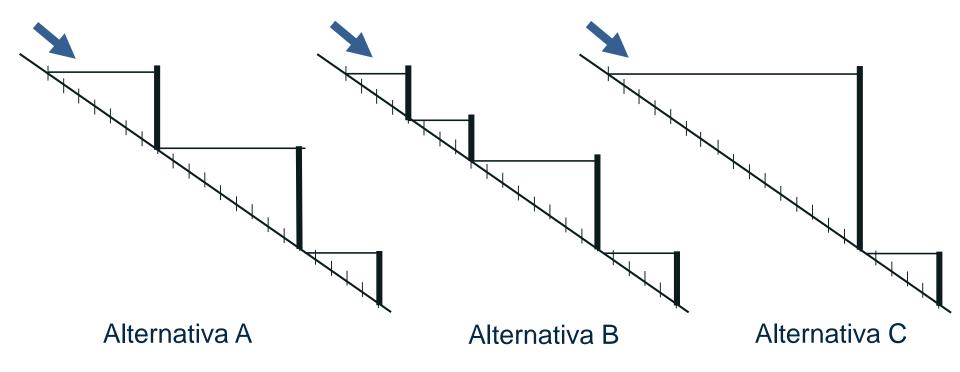


 Em curso, um estudo de caso por recomendação da EPE (fechamento do P&D)

Definição de projetos candidatos

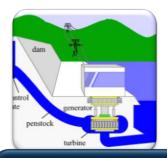
 Utilização de mapas da AAI para cálculo de métricas socioambientais pelo HERA

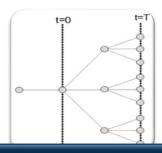
 Otimização de custos de engenharia e alternativas de divisão de quedas



Problema de divisão de quedas

- Quais aproveitamentos escolher a partir do potencial hidroelétrico de uma bacia hidrográfica?
 - Problema complexo: questões técnicas, econômicas, sociais e ambientais


Módulos do HERA

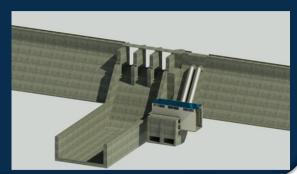


GIS

- Áreas de drenagem
- Seleção de candidatos
- · Curvas cota x área x volume
- Regionalização de vazões
- Interferência dos projetos

Engenharia

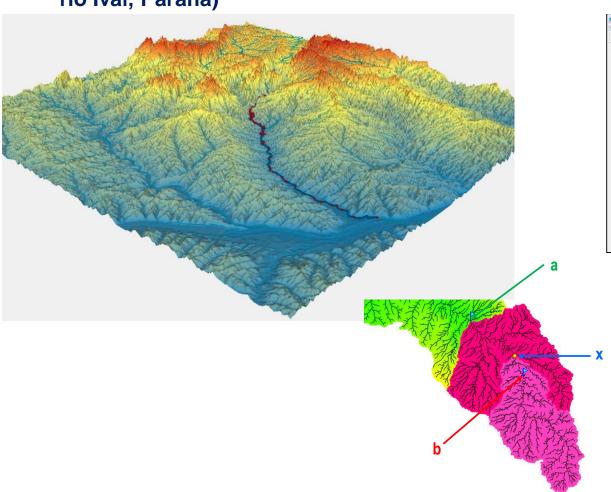
- Dimensionamento das estruturas (Manual de Inventário)
- Orçamentos dos projetos (inclusive Conta 10)


Otimização

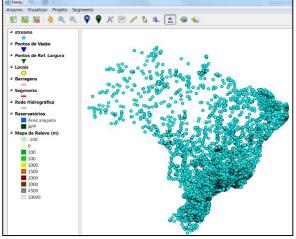
- Seleção de projetos que maximizam função objetivo sujeito a restrições
- Problema não-linear, inteiro, multiestágio, estocástico

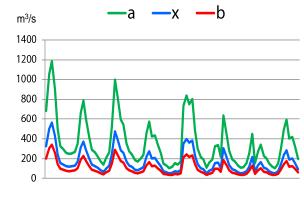
Resultados

Informação necessária

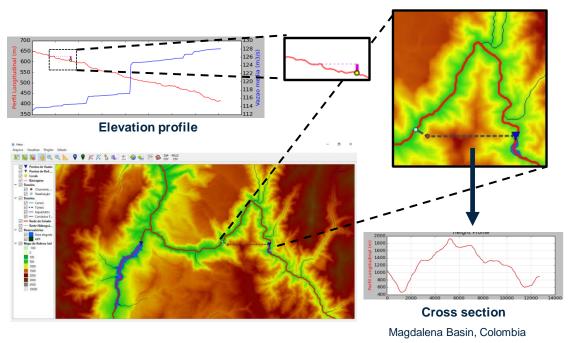

- Camadas de informação (shapefiles diversos)
 - Topografia: base de dados da NASA, levantamentos de campo, etc.
 - Hidrologia: localização das estações fluviométricas (HidroWeb/ANA)
 - Geologia: mapa geológico regional (interpretado)
 - Ambiental: Áreas protegidas, compensações, blueprint de conservação
 - Social: densidade populacional, custo de relocação e aquisição de área urbanas e rurais
 - Infraestrutura: estradas, pontes, ferrovias, dutos na região dos aproveitamentos.
- Hidrologia
 - Série de vazões históricas mensais e máximas diárias em estações fluviométricas (HidroWeb/ANA)
- Bancos de dados com custos unitários
 - Definição de orçamentos dos aproveitamentos

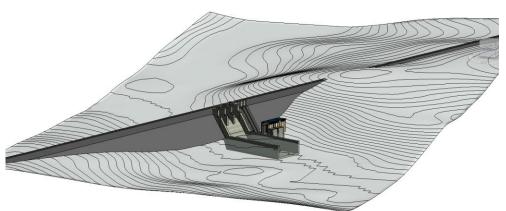
Modelo Digital de Elevação



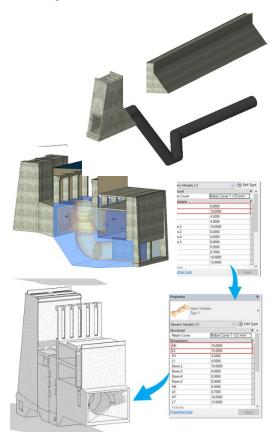


Integração com a rede fluviométrica brasileira (HidroWeb / ANA)



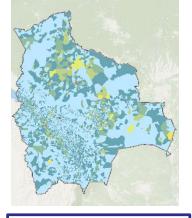


Engenharia



Componentes

Estudos de Interferências



Infraestrutura

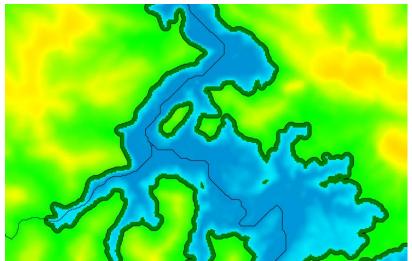
Exemplos de camadas (shapefiles) importados para o HERA (Bolívia)

População

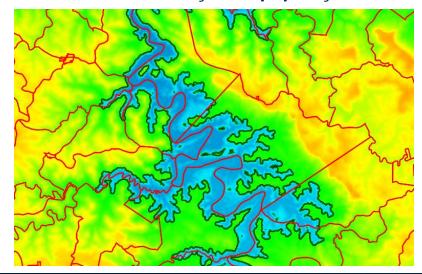
Informações usadas na avaliação de impactos dos

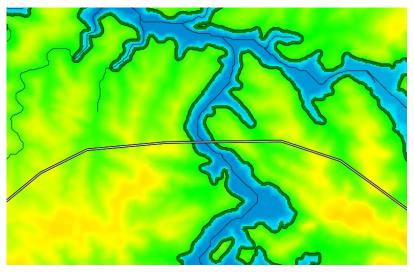
Áreas rurais e urbanas

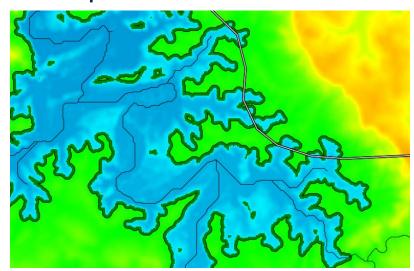
TIs e áreas protegidas



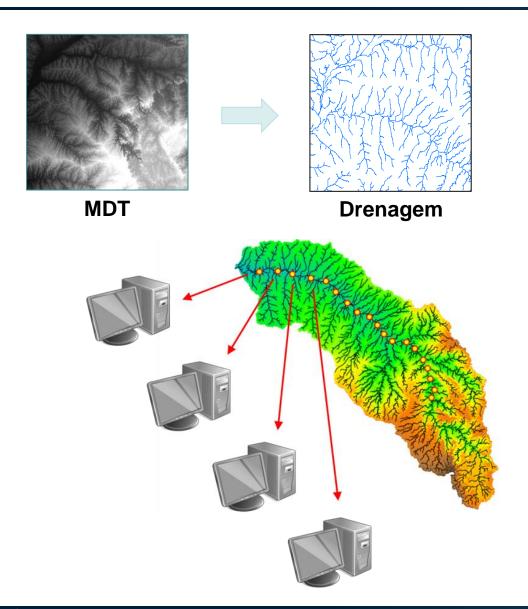
Interferências



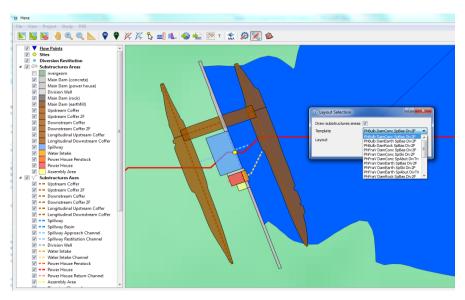

Supressão de vegetação

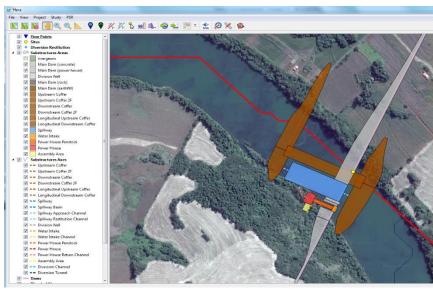

Realocação de população

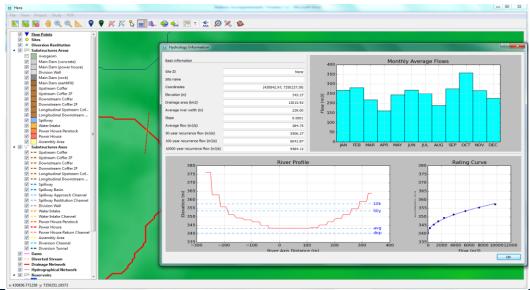
Pontes


Impactos em infraestrutura viária

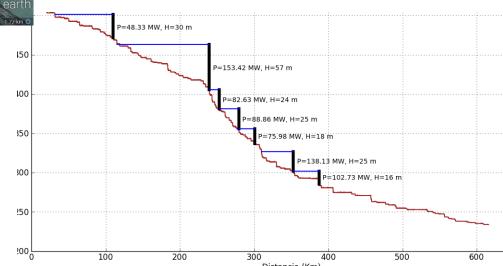
Processamento distribuído




Reservatórios


Interface do HERA

Resultados



Arquivos KML para Google Earth

Perfis verticais com alternativa selecionada

Visão Geral

Componentes Open-Source

Visão Geral

Colaboração com Softwares Comerciais

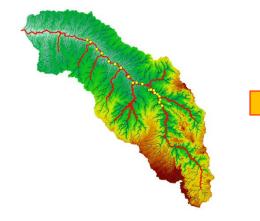
OptGen

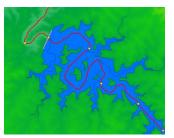
Visão Geral

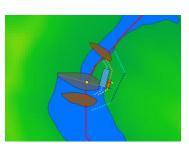
Fluxo de Processamento de Dados

Demonstração no HERA

Processamento Distribuído





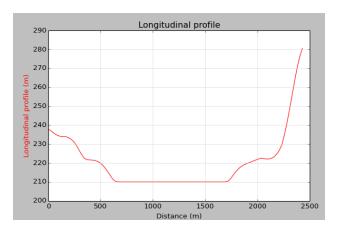


Métricas de Impacto

Engenharia

Temário

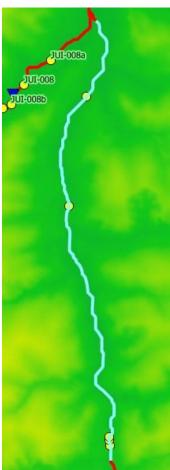
- Visão geral
- Engenharia
 - Geração de alternativas
 - Dimensionamento
 - Cálculo de volumes & orçamento
 - Modelagem 3D de Arranjos
- Meio Ambiente
 - AAI & Blueprint de conservação
 - Métricas e restrições socioambientais
- Estudo de caso
- Conclusões

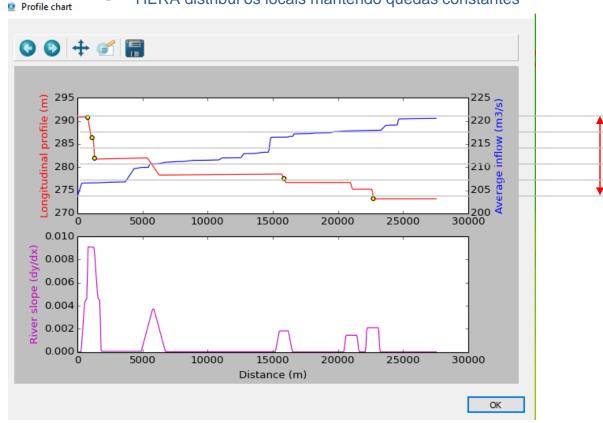

Seleção de Locais

Seleção Manual de Eixos Candidatos:

Ferramentas Auxiliares:

- Geração de Curvas de Nível
- Perfis Transversais
- Perfis Longitudinais pelo Rio




Seleção de Locais

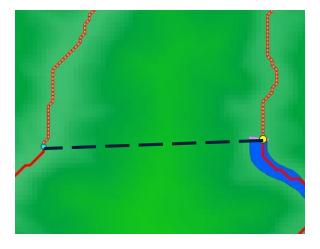
Seleção automática do HERA:

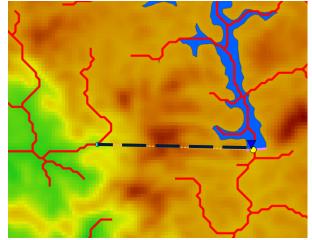
Critérios:

- Usuário define a quantidade de pontos
- HERA distribui os locais mantendo quedas constantes

Seleção de Quedas

Arranjos com Casa de Força ao Pé de Barragem

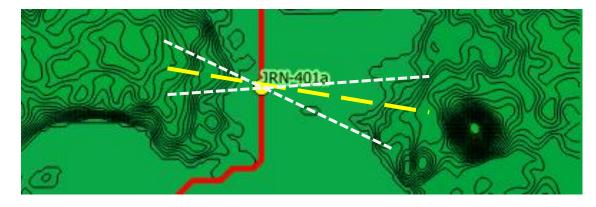

	Site name								Restitution coord. X	Restitution coord. Y
1		152	1	152	616	U10D0	10.0	0.0		
			2	152	617	U15D0	15.0	0.0		

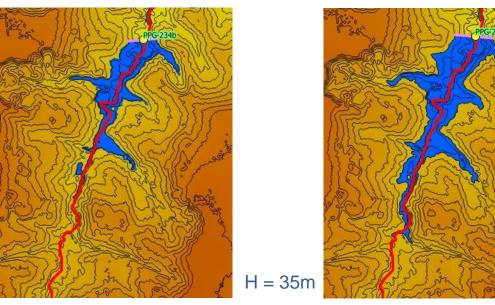

Arranjos com Circuito em Derivação por Canal ou Túnel

	Site name				Site name	-				Restitution coord. X	
1		10	1	10		54	U10D60	10.0	60.0		
			2	10		55	U15D60	15.0	60.0		

Arranjos com Transposição de Bacias

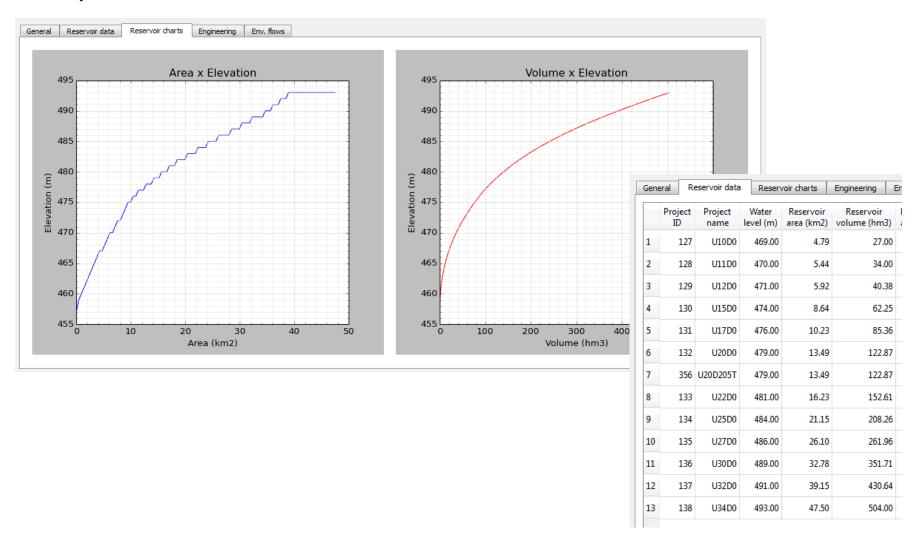
	Site name				Site name	-	-		Restitution coord. X		Ī
1		16	1	16		380	U20D120T	20.0	672021.05	41563.31	





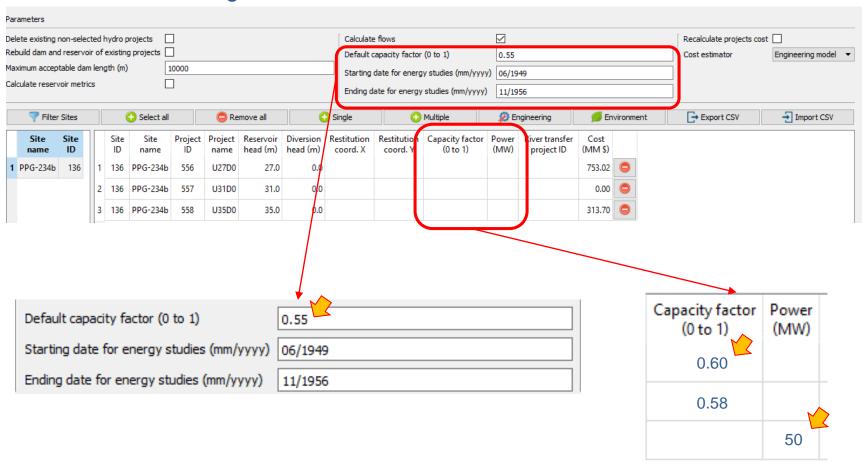
Definição do Eixo de Barramento

Reservatórios



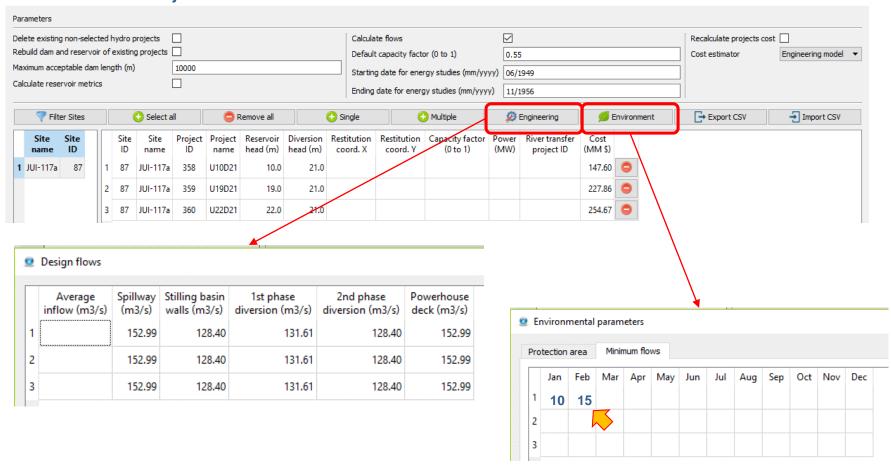
H = 27m

Propriedades de Reservatórios



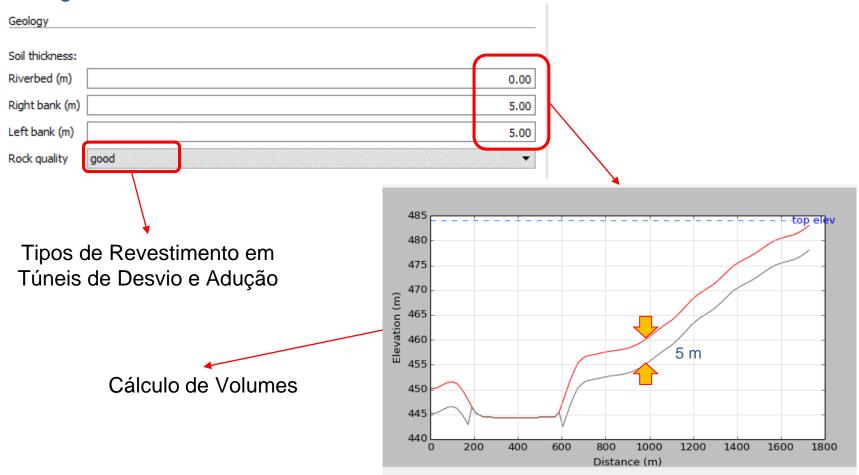
Critérios de Dimensionamento

Características Energéticas



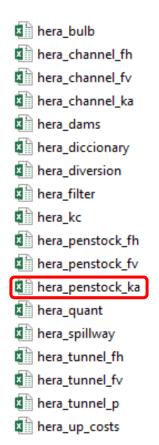
Critérios de Dimensionamento

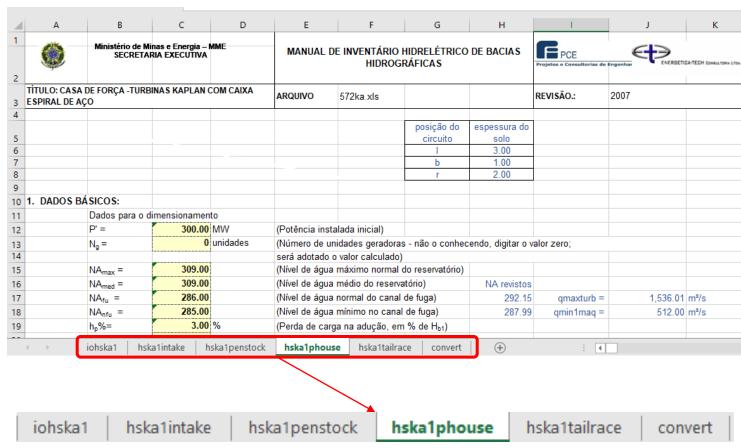
Vazões de Projeto



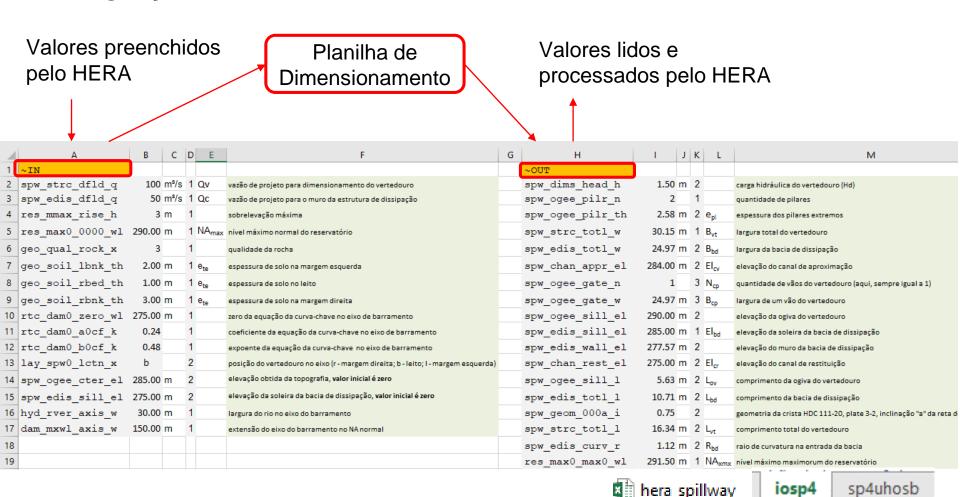
Critérios de Dimensionamento

Geologia




Dimensionamento de Estruturas

Planilhas do Manual de Inventário, 2007 = Referência



Dimensionamento de Estruturas

Integração entre o HERA e o Excel = Flexibilidade

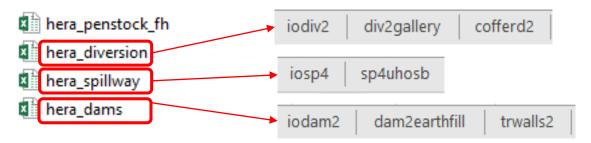
Dimensionamento de Estruturas

Padronização das Variáveis

×	Articulação com o							Ar				
	Código			Unidade						de	HEF	RA Definição
А	A	В	С	D	Е	F	G	Н	1	J	К	L
35	dam_crst_0000_el	DAM		CRST		0000		EL	m		X	dam crest elevation
36	dam_crst_0000_1	DAM	_	CRST	_	0000	_	L	m		X	dam crest width
37	dam_crst_max0_h	DAM		CRST		MAX0	_	Н	m			maximum dam height
4	А	В	С	D	E	F	G	Н	1	J	K	M
320	pwh_genr_0000_ct	PWH		GENR		0000		CT	\$			custo de um gerador
321	pwh_genr_hous_d	PWH		GENR		HOUS		D	m	D _{pg}	X	diâmetro do poço do gerador
322	pwh genr totl n	PWH		GENR	Ī	TOTL	Ī	N			X	quantidade de geradores
Ali	Α	В	С	D	Е	F	G	Н	1	J	K	N
71	div_cfd1_dfld_q	DIV	_	CFD1		DFLD	_	Q			X	caudal de diseño para las estrucuturas de la primera fase del desvío
72	div_cfd1_dwst_el	DIV	_	CFD1	_	DWST	_	EL	m			elevación de la cresta de la ataguía de 1a fase aguas abajo
									-			
A	Α	В	С	D	Е	F,	G	Н	1	J	K	0
412	spw_strc_dfld_q	SPW	_	STRC		DFLD	_	Q			X	débit de projet pour dimmensioner l'évacuateur de crues
413	spw_strc_totl_l	SPW	_	STRC	_	TOTL	_	L	m	L_{vt}	X	longueur totale du évacuateur de crues
414	spw_strc_totl_w	SPW	_	STRC	_	TOTL	_	W	m	\mathbf{B}_{vt}	X	largeur totale du évacuateur de crues

Aspectos Inovadores

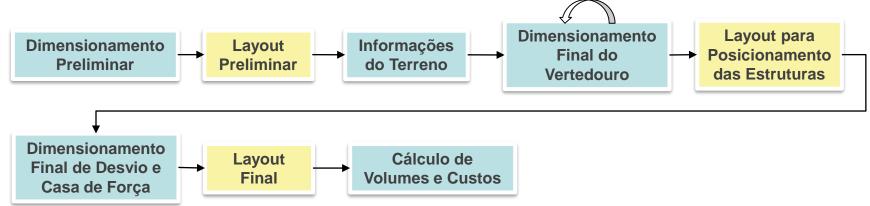
Integração das Planilhas do Manual

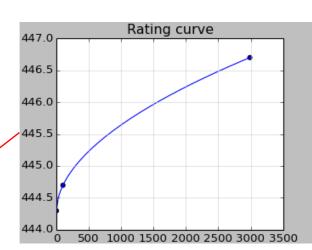

✓ Dimensionamento articulado das estruturas do circuito de geração em um único arquivo;

Exemplo: Circuito longo com derivação em túnel de adução e turbina Francis Vertical

✓ Composição de arranjos a partir da integração das planilhas de desvio, vertedouro, barragem e circuitos de geração no workflow do HERA.

Exemplo: Arranjo com desvio por galeria, vertedouro livre, barragem de terra e circuito curto com Francis Horizontal

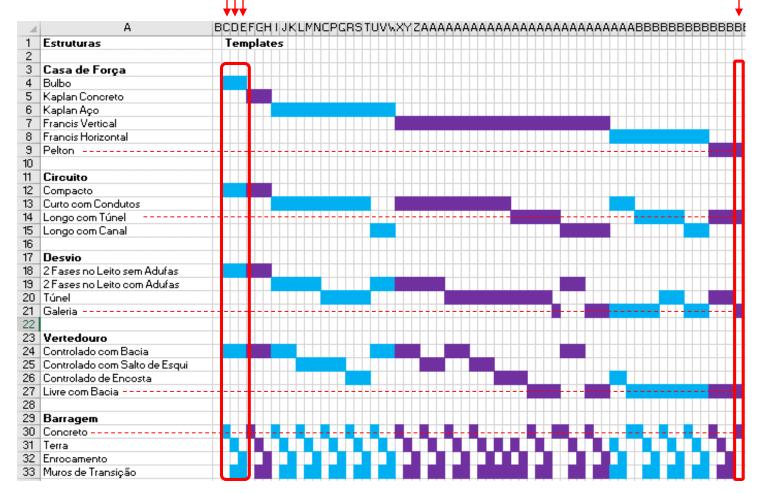

Aspectos Inovadores


Adaptações e Melhorias

✓ Soluções para cálculos iterativos no workflow do HERA.

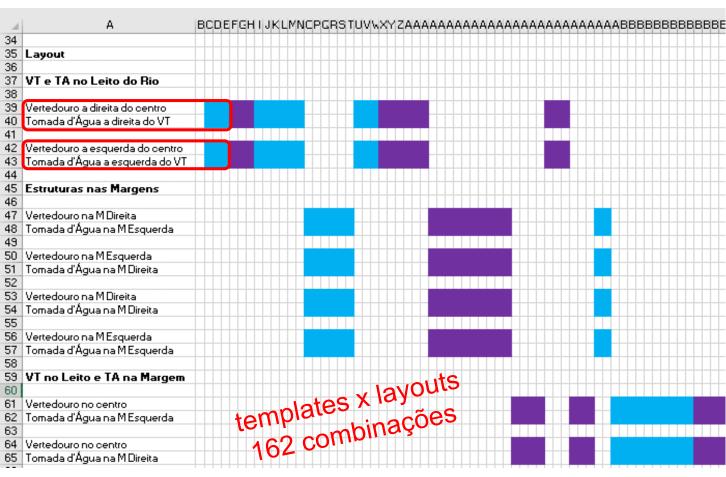
✓ Definição pelo HERA de curva-chave para os locais de interesse;

> Definição de Níveis d'Água para as Vazões de Projeto



"Templates"

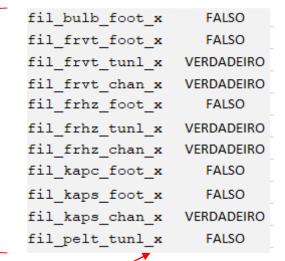
Alternativas de Conjunto de Estruturas Disponíveis 63 alternativas

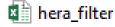


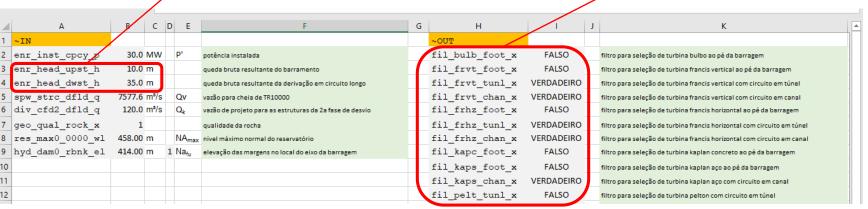
"Layouts"

Alternativas de posicionamento das estruturas ao longo do eixo da barragem

16 alternativas

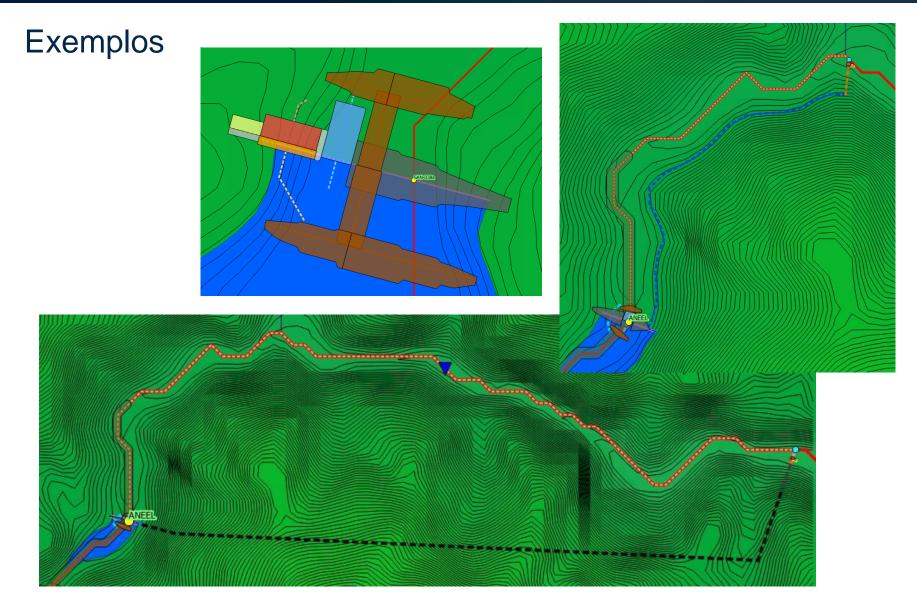



Filtros

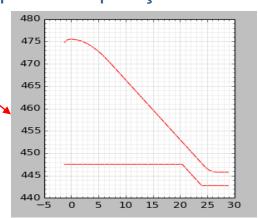

Evitam a simulação de alternativas tecnicamente inviáveis

Arranjo em derivação com queda total de 45m

3 enr_head_upst_h 10.0 m 4 enr head dwst h 35.0 m Alternativas ao pé da barragem e de túnel com turbina Pelton eliminadas

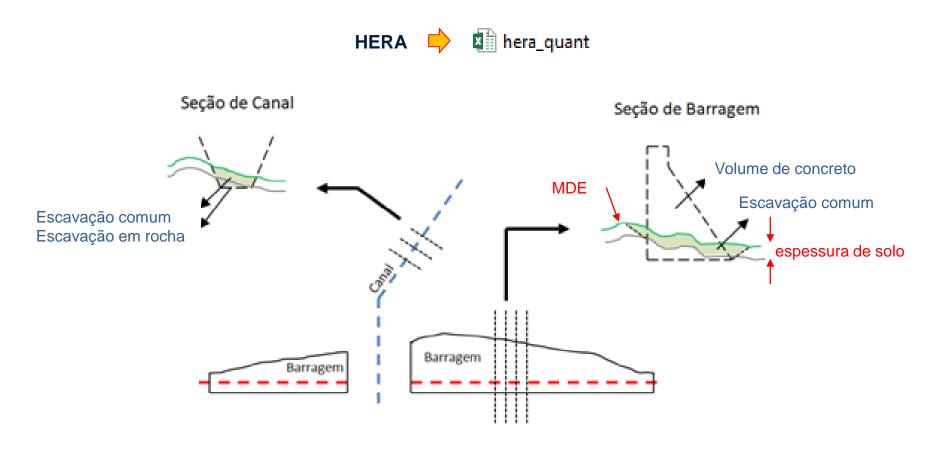


Demonstração no HERA



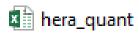
Aspectos Inovadores

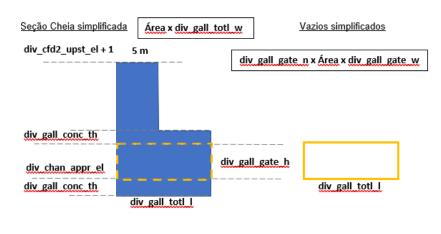
- ✓ Determinação pelo HERA de quantitativos de corte e aterro por integração;
- ✓ Alternativas de Revestimento para túneis de desvio e adução;
- ✓ Definição simplificada do volume de concreto de casas de força;
- ✓ Cálculo da geometria da ogiva do vertedouro;
- ✓ Balanceamento simplificado de materiais para composição de custos.



Aspectos Inovadores

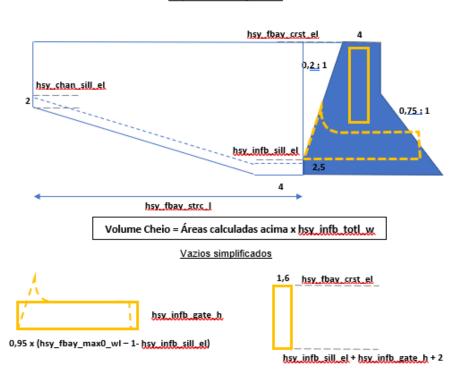
Quantitativos calculados no ambiente do HERA por integração numérica:





Aspectos Inovadores

Quantitativos calculados em planilha:

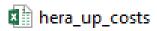

Galeria de Desvio:

Tampão: div gall gate n x [1,5 x (div_gall_gate_h² * div_gall_gate_w)], em m³

Câmara de Carga e Tomada dos Condutos:

Seção Cheia simplificada

Volume Vazio = Áreas acima x hsy infb gate n x hsy infb gate w



Aspectos Inovadores

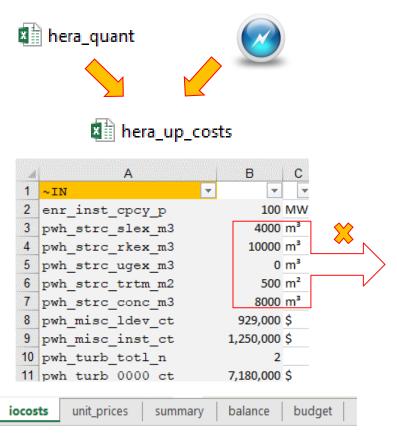
Balanceamento de Materiais:

32 QU 33	ANTITIES SUMMARY				
34					
35	ITEM	UNIT	QUANTITY		
36	Common excavation	m³	9,300		
37	Surface rock excavation	m³	21,400		
38	Underground rock excavation	m³	10,600		
39	Borrow soil	m³	(
10	Quarry rock	m³	12,000		
11	Foundation cleaning and treatment - dam earthworks	m²	0		
12	Foundation cleaning and treatment - concrete strucutures	m²	6,300		
13	Cofferdam removal	m³	500		
4	Cofferdam - 1st phase	m³	(
5	Cofferdam - 2nd phase	m³	1,000		
16	Compacted earth fill	m³	(
7	Clay core	m ³	8,000		
8	Rockfill	m³	16,000		
.9	Filters and transitions	m³	(
0	Rip-rap or rockfill protection	m ³	(
1	Downstream face protection (grass)	m²	(
2	Cement	t	8,088		
3	Structural concrete	m³	26,100		
54	Roller-compacted or mass concrete	m³	500		
55	Shotcrete	m³	1,900		
6	Reinforcement steel	t	1,996		
7	Steel lining of penstocks	t	589		
8					
· 0	iocosts unit_prices summary	balance	budget		

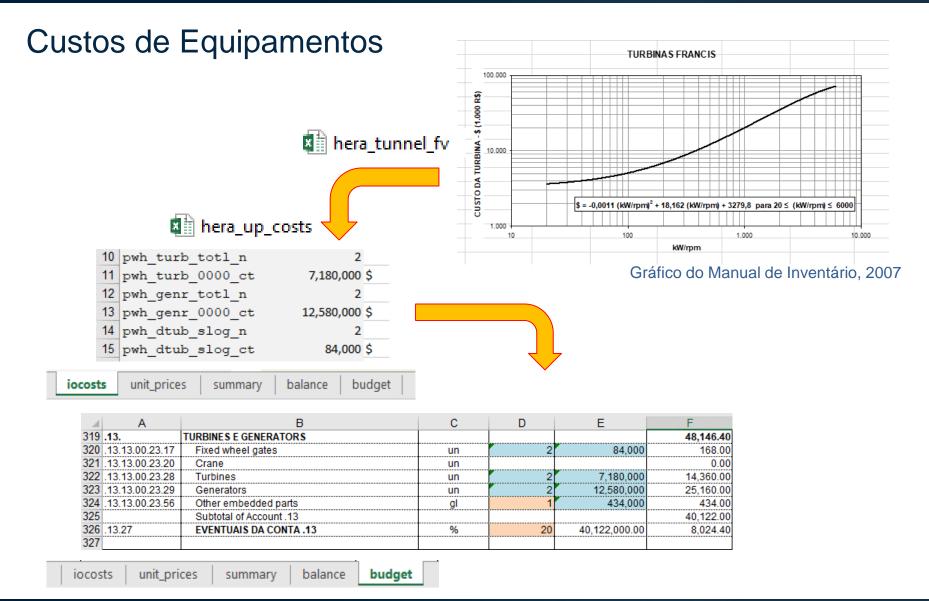
1	CUT AND FILL VOLUMES		
2		Unit	Volume
3	Rock Excavation	m ^s	32,000
4	Required Rockfill and Aggregates	m ^s	43,112
5	Cofferdam - 1st phase	m ^s	0
6	Cofferdam - 2nd phase	m ^s	293
7	Rockfill	m³	14,960
8	Filters and transitions	m ^s	0
9	Rip-rap or rockfill protection	m ^s	0
10	Concrete	m ^s	27,859
11	Quarry rock	m ^s	12,000
12			
13	Common Excavation	m³	9,300
14	Required Earthfill	m ^s	880
15	Cofferdam - 1st phase	m ^s	0
16	Cofferdam - 2nd phase	m³	880
17	Compacted earthfill	m³	0
18	Clay core	m³	0
19	Borrow soil	m³	0

iocosts unit_prices summary balance budget

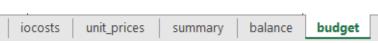
Sistema de Contas do Manual de Inventário = Referência


hera_up_costs

		_		_	_	_						
	Α	В	С	D	E	F						
	.10.15.47.17	Other costs	gl			0.00						
	.10.15.48	MULTIPLE USES	gl			0.00						
63	.10.15.13	OTHER COSTS	gl			0.00						
64		Subtotal of account .10				0.00						
65	.10.27	MISCELLANEOUS ITEMS FROM ACCOUNT .10	%	20.00	0.00	0.00						
66												
	.11.	POWERHOUSE (CIVIL CONSTRUCTION) AND RELATED LAND DEVELOPMENTS				7,612.20						
68	.11.12	LAND DEVELOPMENTS IN THE PLANT AREA	gl	1	929,000.00	929.00						
69	.11.13	POWERHOUSE				5,414.50						
70	.11.13.00.12	Excavation	gl			274.00						
71	.11.13.00.12.10	Commom	m³	4,000	8.50	34.00						
72	.11.13.00.12.11	Surface rock	m³	10,000	24.00	240.00						
73	.11.13.00.12.12	Underground rock	m³	0	139.00	0.00						
74	.11.13.00.13	Foundation cleaning and treatment	m²	500	37.00	18.50						
75	.11.13.00.14	Concrete	gl			3,872.00						
76	.11.13.00.14.13	Cement	t	2,400	180.00	432.00						
77	.11.13.00.14.14	Concrete without cement	m³	8,000	220.00	1,760.00						
78	.11.13.00.14.15	Reinforcement steel	t	600	2,800.00	1,680.00						
79	.11.13.00.15	Installations and final works	gl	1	1,250,000.00	1,250.00						
80		Subtotal of Account .11				6,343.50						
81	.11.27	MISCELLANEOUS ITEMS FROM ACCOUNT .11	%	20	6,343,500.00	1,268.70						
82												
83	.12.	DAMS AND INTAKES				29,620.38						
84	.12.16	RIVER DIVERSION				1,658.44						
85	.12.16.22	COFFERDAMS	m³			14.78						
86	.12.16.22.12	Concrete for deflector baffle	gl			0.00						
87	.12.16.22.19	Earth-rock cofferdam 1st Phase	m³	0	8.50	0.00						
-00												
	← → ic	ocosts unit_prices summary balance budget +										


Custos de Obras Civis

.di	Α	В		С	D						
1	UNI	IIT PRICES SUMMARY									
2											
3		ITEMS	UNIT	UNIT PRICE							
5		Common excavation		m³	3.82						
6		Surface rock excavation		m³	10.57						
7		Underground rock excavation		m³	70.43	1					
8		Borrow soil		m ³	7.87						
9		Quarry rock		m³	10.77						
10		Foundation cleaning and treatment - dam ear	thworks	m²	3.74						
11		Foundation cleaning and treatment - concrete	e strucutures	m²	29.96						
12		Cofferdam removal		m³	3.32						
13		Cofferdam - 1st phase		m ³	1.91						
14		Cofferdam - 2nd phase		m ³	1.66						
15		Compacted earthfill		m ³	1.35						
16		Clay core		m ³	5.58						
17		Rockfill		m ³	5.23						
18		Filters and transitions		m ³	13.08						
19		Rip-rap or rockfill protection		m ³	6.49						
20		Downstream face protection (grass)		m²	2.97						
21		Cement		t	175.08						
22		Structural concrete		m ³	100.62						
23		Roller-compacted or mass concrete		m³	56.85	_					
24		Shotcrete		m ³	190.17						
25		Reinforcement steel	t	2,176.91]						
26		Steel lining of penstocks	t	3,004.18							
27		Local access		km	217,338.54						
28		Local bridge access m 25,154.92									
29											
			Ī								
	4	iocosts unit_prices	summary	bala	ince budg	jet					



А	i .		Α		В	С	D
152	hera	env	res0_	rurl_a	3867.10	l8 ha	rural properties affected by the reservoir
153	hera	env	res0_	urbn_a		0 ha	urban properties affected by the reservoir
154	hera	env	res0_	clea_a	3093.683	l4 ha	reservoir cleaning area
155	hera	env	_res0_j	ppa0_a		0 ha	permanent preservation areas
156	hera	env	relc_:	road_1		0 km	length of roads to be relocated
157	hera	env	relc_:	rail_l		0 km	length of railways to be relocated
158	hera	env	relc_l	brdg_l		0 m	length of bridges to be relocated
159	hera	env	relc_	tlin_l		0 km	length of transmission lines to be relocated
160	hera	env	inhb_	rurl_n		0	number of inhabitants affected by the reservoir in rural areas
161	hera	env	inhb_	urbn_n		0	number of inhabitants affected by the reservoir in urban areas
						io	costs unit_prices summary balance budget

4	Α	В	С	D	E	F					
1		INVENTORY STUDIES									
2	COST ESTIMATE SPREADSHEET										
3											
4				- UN	IT PRICE -	COSTS					
6	ACCOUNT	ITEM	UNIT	QUANTITY	\$	\$ 10 ³					
7	.10.	LANDS, RESETTLEMENTS, RELOCATIONS AND OTHER SOCIOENVIRONMENTAL ACTIONS				13,768.28					
8	.10.10	LAND ACQUISITIONS AND LAND DEVELOPMENTS				665.14					
9	.10.10.10	URBAN REAL ESTATE	m²			0.00					
10	.10.10.10.10	Reservoir	ha	0	2,991.45	0.00					
1	.10.10.10.11	Construction site, workers' camp, borrow areas, etc.	ha			0.00					
2	.10.10.10.40	Conservation Areas and Permanent Preservation Areas	ha			0.00					
13	.10.10.10.43	Towns and villages	gl			0.00					
4	.10.10.10.44	Isolated social and economic infrastructure	gl			0.00					
5	.10.10.10.17	Other costs	gl			0.00					
6	.10.10.11	RURAL REAL ESTATE	gl			604.67					
7	.10.10.11.10	Reservoir	ha	3,867	156.36	604.67					
18	.10.10.11.11	Construction site. workers' camp. borrow areas. etc.	ha	Ī		0.00					

Resultados

Engineering model build results

Layout DtRbnkDsch SpCbed invalidated: Coffer height greater than 80% of dam height Template PhFrhz HsTunl DmRock SpUbas DvGall:

Layout DtRbnkDsch SpCbed built with cost = 190455099.608

Template PhFrvt HsChnl DmConc SpCbas DvSlui:

Layout DtRbedLcfd SpRbed InRbnk built with cost = 203213653.503 Layout DtRbedLcfd SpLbed InLbnk built with cost = 235533698, 177

Template PhFrvt HsChnl DmConc SpUbas DvGall:

Layout DtRbnkDsch SpCbed built with cost = 199834176.357

Template PhFrvt HsChnl DmEart SpCbas DvSlui:

Layout DtRbedLcfd SpRbed InRbnk built with cost = 201885624.587

Layout DtRbedLcfd SpLbed InLbnk built with cost = 234083507.291 Template PhFrvt HsChnl DmEart SpUbas DvGall:

Layout DtRbnkDsch SpCbed built with cost = 203273276.708

Template PhFrvt HsChnl DmRock SpCbas DvSlui:

Layout DtRbedLcfd SpRbed InRbnk built with cost = 201330526.553 Layout DtRbedLcfd SpLbed InLbnk built with cost = 233594398.559

Template PhFrvt HsChnl DmRock SpUbas DvGall:

Layout DtRbnkDsch SpCbed built with cost = 200852901.942

Template PhFrvt HsTunl DmConc SpUbas DvTunl:

Layout DtRbnkDsch SpCbed built with cost = 197519096.252 Template PhFrvt HsTunl DmConc SpUbas DvGall:

Layout DtRbnkDsch SpCbed built with cost = 197091833.179

Template PhFrvt HsTunl DmEart SpUbas DvTunl:

Layout DtRbnkDsch SpCbed built with cost = 196772366.379 Template PhFrvt HsTunl DmRock SpUbas DvTunl:

Layout DtRbnkDsch SpCbed built with cost = 196620835,242

Template PhKaps HsChnl DmConc SpCbas DvSlui:

Layout DtRbedLcfd SpRbed InRbnk built with cost = 152432408.282 Layout DtRbedLcfd SpLbed InLbnk built with cost = 160855680.242

Template PhKaps HsChnl DmEart SpCbas DvSlui:

Layout DtRbedLcfd SpRbed InRbnk built with cost = 151083142,803 Layout DtRbedLcfd SpLbed InLbnk built with cost = 159384252, 793

Template PhKaps HsChnl DmRock SpCbas DvSlui:

Layout DtRbedLcfd SpRbed InRbnk built with cost = 150539586.491 Layout DtRbedLcfd SpLbed InLbnk built with cost = 158906685.784

SAC-014b

		Project ID	Project name	Reservoir head (m)			Turbined inflow (m3/s)	Capacity factor (0 to 1)	Power (MW)	Annual production (GWh)	Total cost (MM \$)		Water evel (m)	Reservoir area (km2)
	1	584	U10D15	10.00	15.00	25.00	281.24	0.55	58.88	283.6	139.56	2370.37	335.00	0.53
	2	586	U15D15	15.00	15.00	30.00	281.24	0.55	70.65	340.40	150.54	2130.74	340.00	1.17
2	3	518	U18D0	18.00	0.00	18.00	324.87	0.55	49.89	240.30	123.51	2475.65	343.00	1.77
2	4	519	U20D0	20.00	0.00	20.00	324.87	0.55	55.33	266.5	129.00	2331.47	345.00	2.04
3	5	520	U22D0	22.00	0.00	22.00	324.87	0.55	60.77	292.79	137.94	2269.90	347.00	2.54
1	6	585	U5D15	5.00	15.00	20.00	281.24	0.55	47.10	226.93	128.78	2734.19	330.00	0.37

Total cost for project U18D0(518) - template PhKapc HsComp DmRock SpCbas DvRbed - layout FtRbedLcfd SpLbed InLspw = 123505653,834 Total cost for project U20D0(519) - template PhKapc HsComp DmRock SpCbas DvRbed - layout FtRbedLcfd SpLbed InLspw = 128998206,925 Total cost for project U22D0(520) - template PhKapc HsComp DmRock SpCbas DvRbed - layout FtRbedLcfd SpLbed InLspw = 137941514,4 Total cost for project U5D15(585) - template PhKaps HsChnl DmRock SpCbas DvSlui - layout DtRbedLcfd SpRbed InRbnk = 128783143,499 Total cost for project U15D15(586) - template PhKaps HsChnl DmRock SpCbas DvSlui - layout DtRbedLcfd SpRbed InRbnk = 150539586.491 Total cost for project U10D15(584) - template PhKaps HsChnl DmRock SpCbas DvSlui - layout DtRbedLcfd SpRbed InRbnk = 139558590.575

Demonstração no HERA

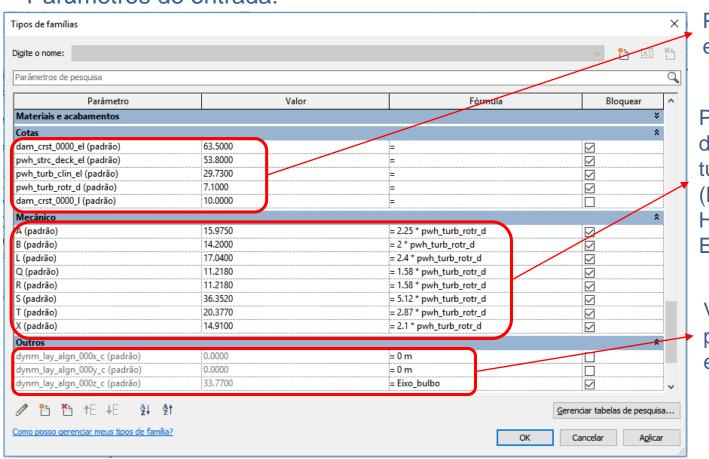
Integração com Ferramentas BIM (Building Information Model)

- Desenvolvimento dos modelos parametrizados das estruturas:

 Programação para montagem automatizada dos arranjos selecionados dentro do ambiente Revit:

Computational Design for BIM

- Apresentação conceitual do empreendimento:



Estrutura dos Modelos

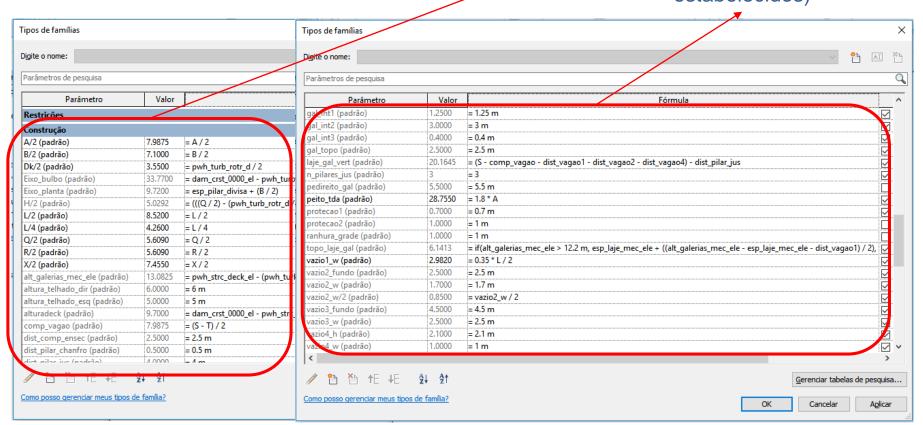
Exemplo: Casa de Força com turbina Bulbo

Parâmetros de entrada:

Parâmetros de entrada (HERA)

Parâmetros de dimensionamento da turbina (Manual de Inventário Hidrelétrico – ELETROBRÁS)

Variáveis Dynamo para posicionar as estruturas no arranjo

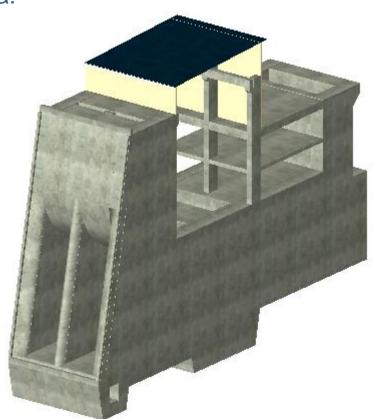


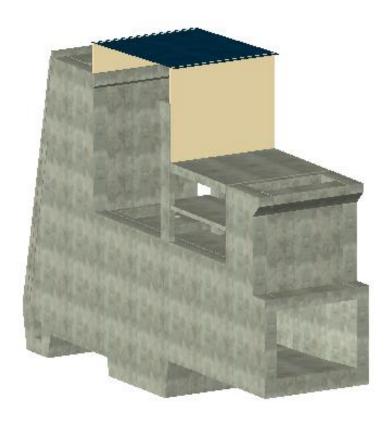
Estrutura dos Modelos

Exemplo: Casa de Força com turbina Bulbo

Parâmetros de construção:

Parâmetros internos de construção do modelo (com fórmulas ou critérios préestabelecidos)





Estrutura dos Modelos

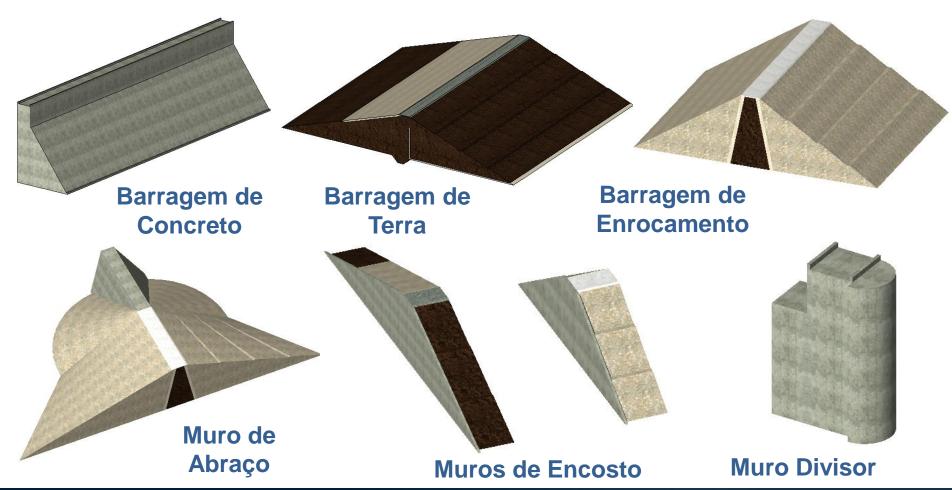
Exemplo: Casa de Força com turbina Bulbo

Saída:

Vistas do Bloco da Casa de Força com turbina Bulbo.

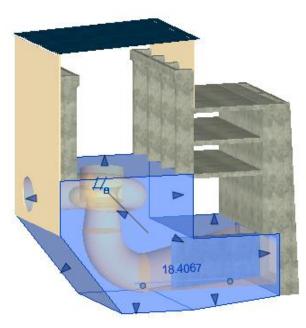
Modelos parametrizados desenvolvidos no Revit

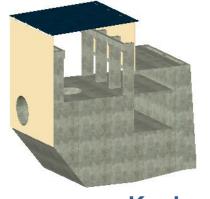
- Barragens (concreto, terra e enrocamento);
- Muros (abraço, encosto e divisor);
- Tomada d'água;
- Casas de Força / Áreas de Montagem:
 - Bulbo
 - Kaplan com caixa espiral em aço
 - Kaplan com caixa espiral em concreto
 - Francis de eixo vertical
 - Francis de eixo horizontal
 - Pelton de eixo horizontal
 - Pelton de eixo vertical
- Vertedouros:
 - Controlado com bacia de dissipação
 - Controlado com salto de esqui
 - Livre com bacia de dissipação



Modelos parametrizados desenvolvidos no Revit

- Barragens e Muros

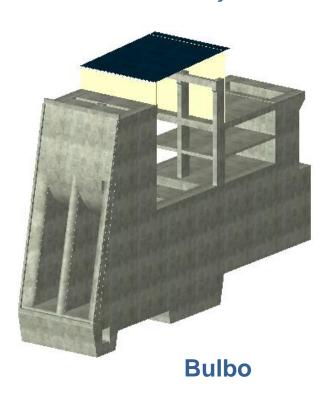


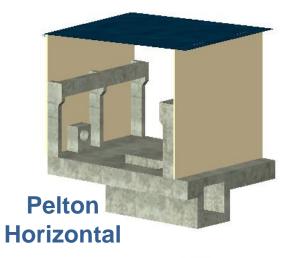

Modelos parametrizados desenvolvidos no Revit

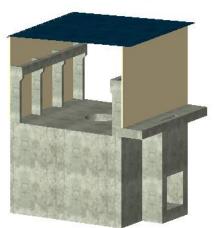
Tomada d'Água e
 Casas de Força

Francis Vertical

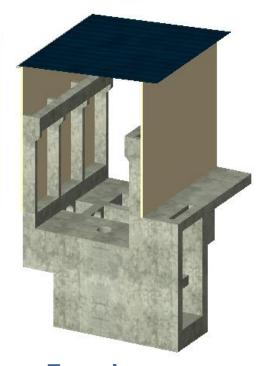
Kaplan Concreto


Kaplan Aço



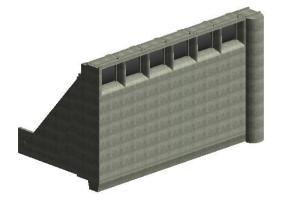


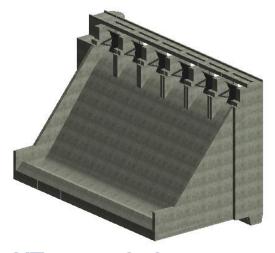
Modelos parametrizados desenvolvidos no Revit


Tomada d'Água e
 Casas de Força

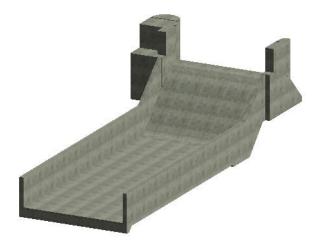
Pelton Vertical

Francis Horizontal


Modelos parametrizados desenvolvidos no Revit

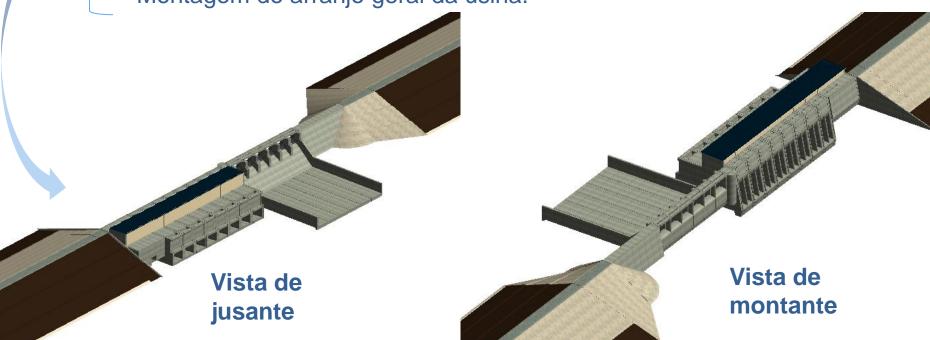





VT controlado com bacia de dissipação

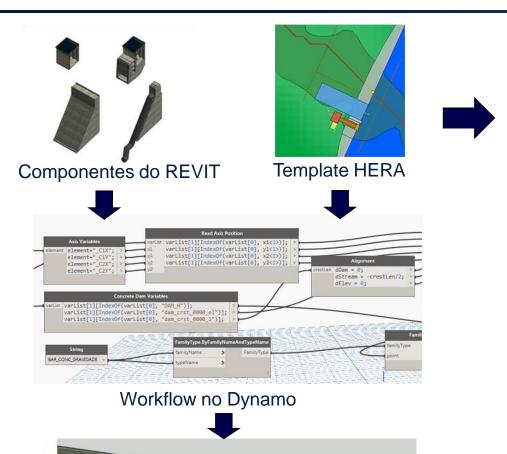
VT controlado com salto de esqui

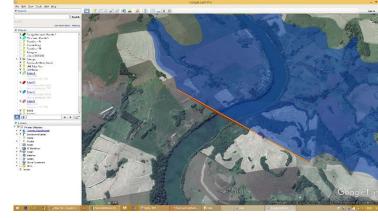
VT livre com bacia de dissipação



Etapas de Construção do Arranjo

- Definição da alternativa selecionada no HERA;
- Leitura dos parâmetros de dimensionamento das estruturas pelo Dynamo;
- Criação dos modelos das estruturas via parâmetros lidos pelo Dynamo;





Arranjo com 8 unidades Bulbo e vertedouro controlado com bacia de dissipação

Exportação ao Google Earth

Modelo no terreno (Infraworks)

Modelo 3D

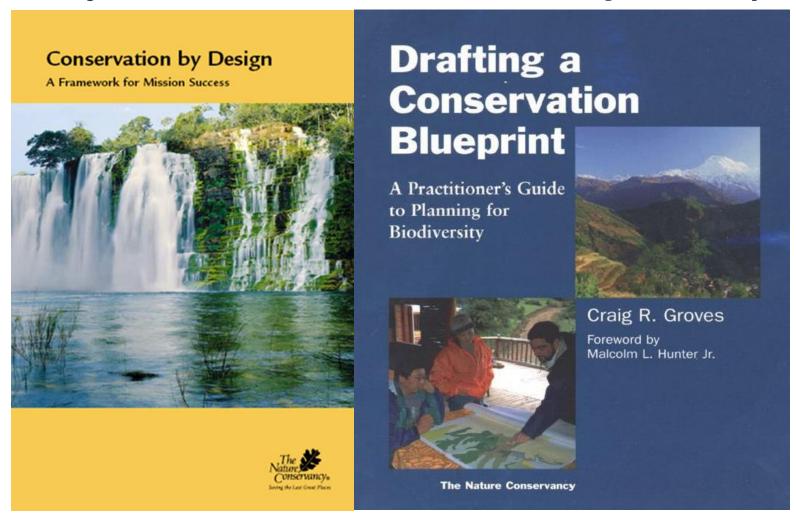
Demonstração Revit - Dynamo

Computational Design for BIM

Temário

- Visão geral
- Engenharia
 - Geração de alternativas
 - Dimensionamento
 - Cálculo de volumes & orçamento
 - Modelagem 3D de Arranjos
- Meio Ambiente
 - AAI & Blueprint de conservação
 - Métricas e restrições socioambientais
- Estudo de caso
- ▶ Discussão

Otimização: parte socioambiental

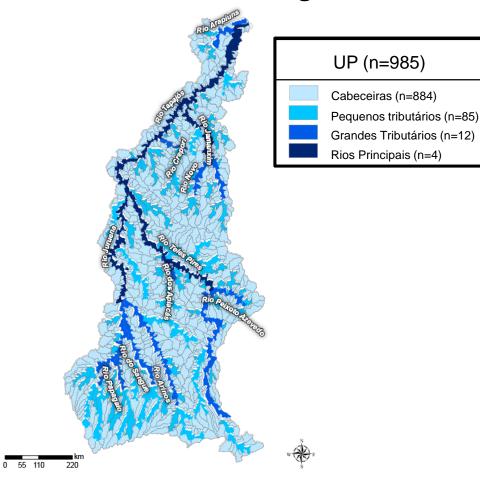


- Componente socioambiental do planejamento
- Avaliação Ambiental Integrada (AAI) nos estudos de alternativas de divisão de quedas (e não somente para uma alternativa selecionada)
- Blueprint para a conservação: implementação da metodologia da The Nature Conservancy (TNC) usada globalmente

► Planejamento Sistemático de Conservação "Blueprint"

O que é um Blueprint?

Ferramenta de planejamento que permite a identificação de um portfólio de áreas que representam a diversidade de habitats e processos ecológicos prioritários – incluindo a manutenção da conectividade aquática – para ações de conservação e manejo numa bacia.


Como gerar e representar sistemas ecológicos de forma sistemática no processo de priorização?

- 1. Gerar e caracterizar unidades de planejamento ao longo dos rios e na bacia de drenagem como um todo para classificação e análise
- 2. Classificar os sistemas ecológicos de água doce agrupar unidades de planejamento com atributos ambientais semelhantes
- 3. Avaliar a condição ecológica/integridade de cada exemplo de sistema ecológico
- 4. Definir metas de representatividade de cada sistema ecológico no portfólio
- 5. Assegurar a conectividade dos exemplos de sistemas ecológicos selecionados para garantir a manutenção de processos ecológicos e ambientais como: regime de migração de peixes, fluxo e transporte de sedimentos.
- 6. Garantir a eficiência do portfólio com a seleção da menor área e número de exemplos de sistemas ecológicos que atendam às metas de representação em uma rede conectada.

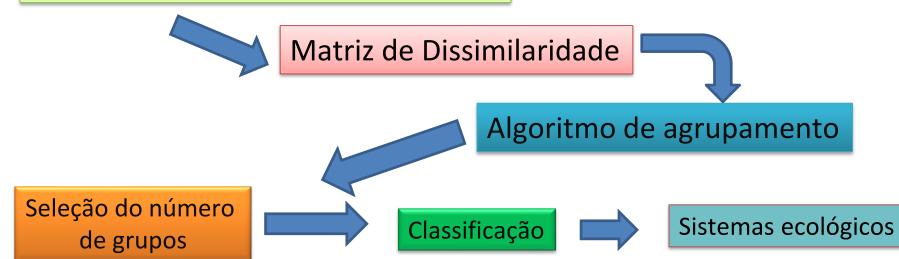
Elementos de drenagem – Unidades de Planejamento (UP)

- Unidades de bacia para o planejamento de ações de conservação e manejo
- Definidas a partir de critérios de estrutura da bacia (área de drenagem em múltiplas escalas)
- Inseridas nas Unidades Ecológicas de Drenagem (UED)

Unidades Ecológicas de Drenagem (UED)

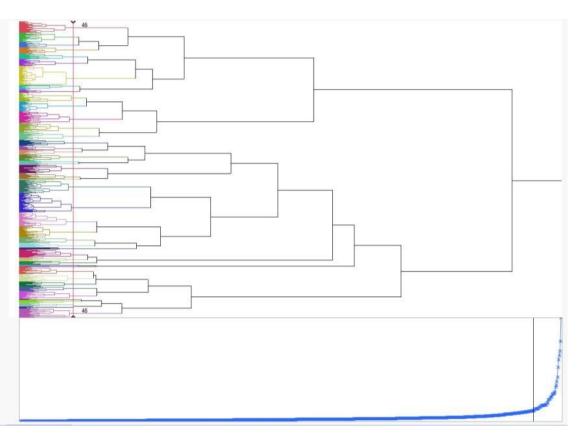
Definidas a partir de critérios de macro Escala, como geologia, geomorfologia e clima

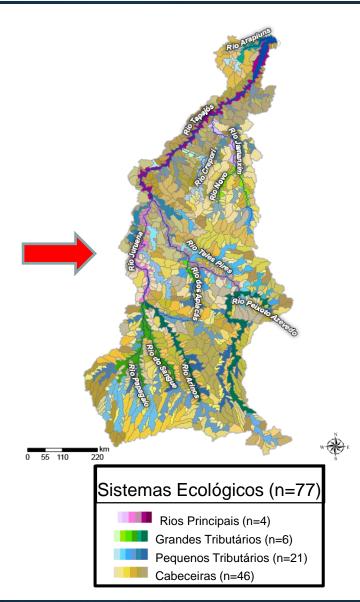
18 UED definidas para a bacia do Tapajós

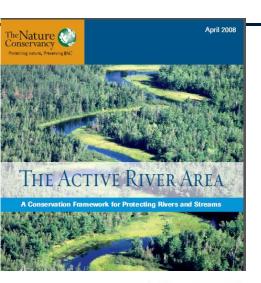


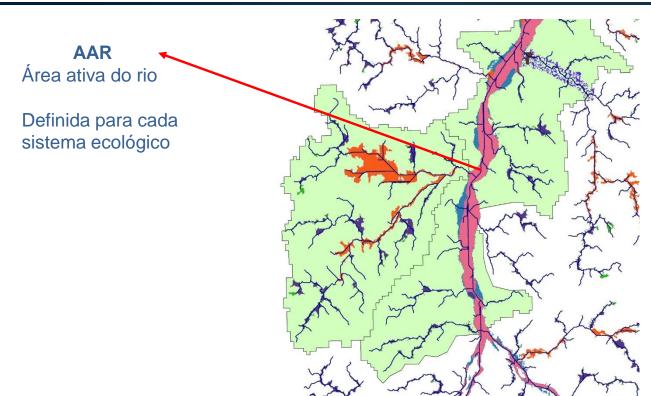
Atribuição de Variáveis Físicas para Classificação

- Elevação
- Gradiente da drenagem
- Gradiente dos leitos
- Densidade de drenagem
- Grau de dendricidade (densidade de confluências)
- Potencial de contribuição de água subterrânea
- Geologia dominante (tipos rochosos)
- Geomorfologia (fisiografia de terreno)
- Clima (regime de temperaturas e precipitação)
- Regime hidrológico (modelado ou empírico)


Unidades de Planejamento




 Dendograma de análise de agrupamentos de UPs em sistemas ecológicos



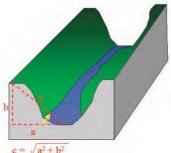
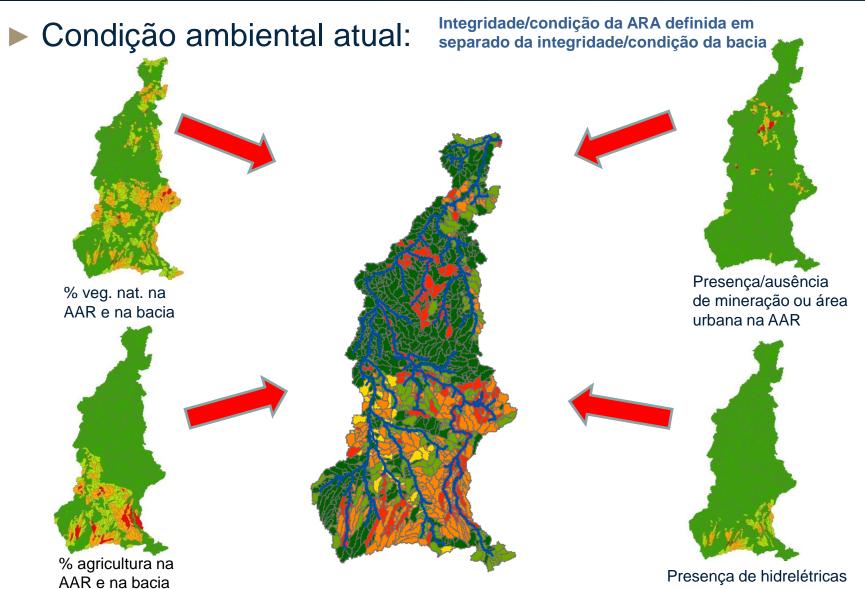
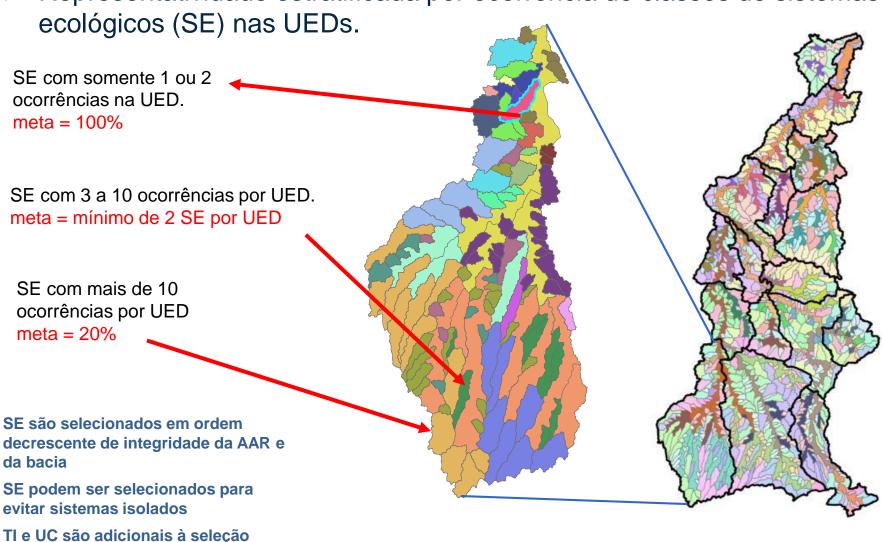
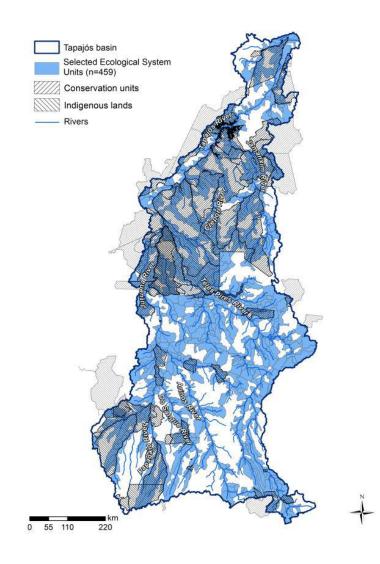



Figure 4.1 – Schematic stream valley cross-section, showing the inputs to PATHDISTANCE modeling: distance (c), slope (yellow arrow), and source (stream) (From Strager et al., 2000).

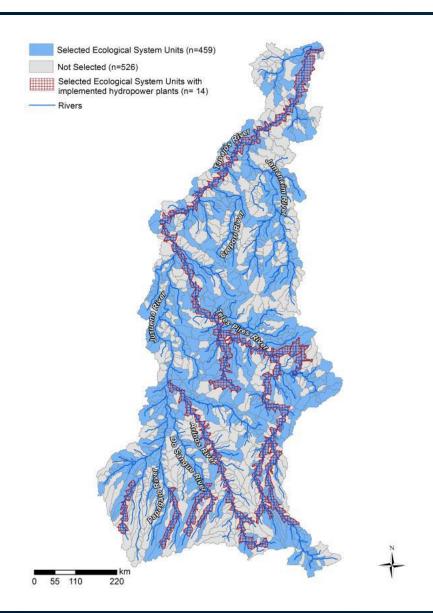
- Representação modelada da maior extensão de inundação em um período de 100 anos, incluindo toda a planície de inundação e terraços laterais
- Define as áreas mais sensíveis de um sistema fluvial, onde o rio e o meio terrestre interagem - incluindo matas ciliares, além da planície de inundação

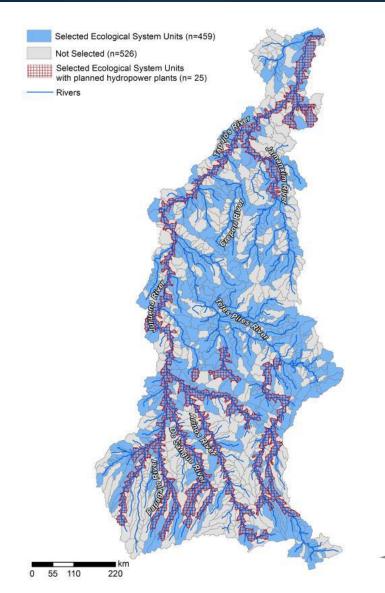


Representatividade estratificada por ocorrência de classes de sistemas



Portfólio de sistemas ecológicos selecionados


- Indica áreas que atualmente apresentam melhor integridade ecológica dentro de uma rede de sistemas ecológicos conectados
- Pode ser usado para orientar o desenvolvimento de infraestrutura energética (ou de outro setor), de modo que os processos ecológicos sejam mantidos
- Pode ser combinado com outros dados na identificação de áreas mais a risco de desmatamento, expansão agrícola, etc., de modo a evitar ou minimizar impactos.



Planejamento e Gestão Territorial Rorte Fluminense

Considerações Gerais

Integração Blueprint Hera – contribuição ao componente ambiental da metodologia de inventário com o objetivo de evitar que áreas estratégicas para a manutenção processos ecológicos e importantes do ponto de vista da conservação sejam consideradas para o aproveitamento hidrelétrico

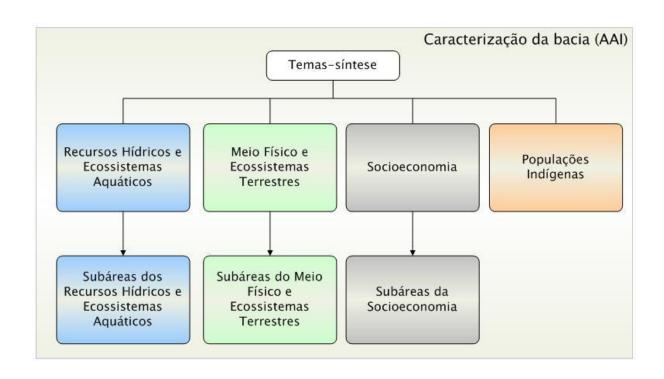
Blueprint é uma ferramenta em construção e ainda carece de validação social

Na Amazônia: risco de desmatamento e efeitos das mudanças climáticas devem ser considerados nos estudos de inventário

Em qualquer bacia: efeitos cumulativos e sinérgicos com empreendimentos de outros setores devem integrar a abordagem ambiental

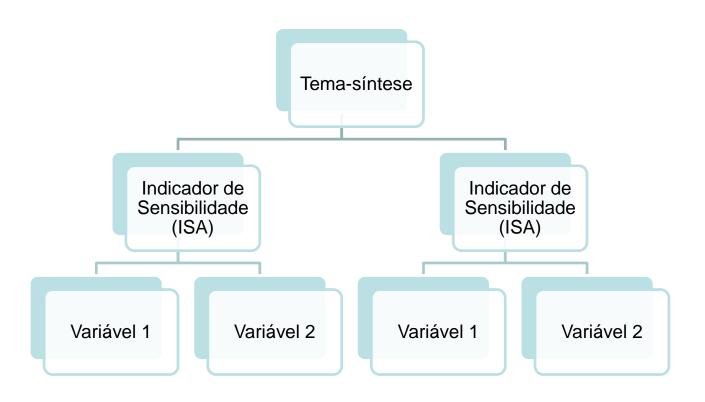
Sobreposição de aproveitamento hidrelétrico com Terras Indígenas e Unidades de Conservação e impactos diretos sobre estas devem ser apontados com as devidas ressalvas se listados como resultado do inventário

Considerações Gerais



Os inventários por bacia devem estabelecer um ranking de projetos segundo impacto potencial, de forma a subsidiar uma análise comparativa em escala nacional ou regional que resulte na definição dos projetos que devem integrar os planos nacionais. Neste contexto, a automatização do inventário do Tapajós — e a inserção de uma perspectiva ambiental — é um exercício que poderá ser aplicado a outras bacias, agilizando e aprimorando o processo de planejamento em larga escala.

A indicação de aproveitamento hidrelétrico na Amazônia é resultado de processo político nacional sobre o futuro da região e da matriz energética do país, portanto, não depende exclusivamente dos inventários, ainda que estes ofereceram a base técnica necessária para isso.



▶ Tema Síntese: indicadores

Tema-síntese	Indicador de Sensibilidade Ambiental	Peso
Tema-síntese x	Indicador de Sensibilidade Ambiental 1 – ISA ₁	P_{ISA1}
	Indicador de Sensibilidade Ambiental 2 – ISA ₂	P_{ISA2}
	Indicador de Sensibilidade Ambiental n - ISAn	P_{ISAn}

► Indicador de sensibilidade (ISA): variáveis

Indicador de Sensibilidade	Variável	Peso
	Variável 1	p_{var1}
Indicador de Sensibilidade i	Variável 2	p _{var2}
morcador de Sensionidade i		
	Variável m	p_{varm}

- ▶ Tema Síntese: Recursos hídricos e Ecossistemas Aquáticos
 - Indicadores de sensibilidade:
 - ISA 1: Sensibilidade dos recursos hídricos
 - Variáveis de sensibilidade
 - » Efluentes
 - » Uso do Solo
 - ISA 2: Sensibilidade dos ecossistemas aquáticos
 - Variáveis de sensibilidade
 - » Espécies endêmicas, migratórias ou em risco de extinção
 - » Ecossistemas de entorno

- ► ISA 1: Sensibilidade dos recursos hídricos
 - Variáveis de sensibilidade

INDICADOR DE SENSIBILIDADE DE RECURSOS HÍDRICOS									
Variável	Peso	Fonte	Grau	Classes de Avaliação					
		IBGE/SIVAM, 2004	1	Aldeias indígenas (raio de 0,5 km do ponto)					
			2	Vilas, núcleos, povoados (raio de 1 km do ponto)					
Efluentes	0,6			3	Área no entorno das áreas urbanas de até 200 mil habitantes (raio de 5 km)				
			4	Área no entorno das áreas urbanas com mais de 200 mil habitantes (raio de 10 km)					
			5	Áreas urbanas					
	0,4	IBGE/SIVAM, 2004; IBGE, 2007; ZEE, 2009	1	-					
			2	Pastagens com pecuária extensiva					
Uso do solo			3	Pastagens com pecuária semi-intensiva, culturas alimentares para subsistência e extrativismo vegetal					
			4	Zona de influência a jusante de lavoura (5 km)					
			5	Lavoura					

- ► ISA 2: Sensibilidade dos ecossistemas aquáticos
 - Variáveis de sensibilidade

INDICADOR DE SENSIBILIDADE DOS ECOSSISTEMAS AQUÁTICOS									
Variável	Peso	Fonte	Grau	Classes de Avaliação					
		IUCN, 2009; CANTARELLI, 2006	1	Áreas sem comprovação de ocorrência de espécies endêmicas, migratórias ou em risco de extinção					
Espécies endêmicas,			2	-					
migratórias ou em risco	0,3		CANTARELLI,	3	-				
de extinção				4	-				
			5	Áreas de ocorrência de espécies endêmicas, migratórias ou em risco de extinção					
		IBGE/SIVAM, 2004; CONAMA 303/02	1	Área de preservação permanente em área urbana					
			2	-					
Ecossistemas de entorno	0,7		2004;	3	Área de preservação permanente em regiões de pastagens, lavoura e vegetação secundária				
			4	Área de preservação permanente ao longo de rio em regiões de vegetação natural					
			5	Área de preservação permanente em nascentes e ilha fluvial					

Modelo de otimização

Características

- Componentes de operação multiestágio;
- Variáveis binárias ativam a construção de projetos candidatos;
- Não-linear: energia gerada é produto da vazão turbinada e queda;
- Estocástico: incerteza das séries de vazões futuras;

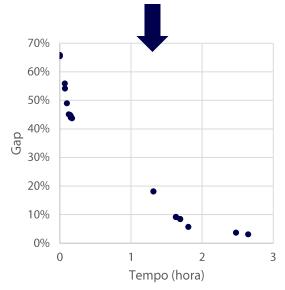
Função Objetivo

 Flexível: receita de venda de energia e outros usos da água e restrições socioambientais

Restrições

- Físicas (ex. balanço hídrico, volumes úteis operados, etc.)
- Ambientais (ex. área máxima inundada de uma alternativa, máxima fragmentação do rio tolerável, etc.)
- Sociais (ex. relocação, compensações diversas)

Otimização da cascata



 Problema de otimização com 80 mil restrições, 120 mil variáveis, das quais 221 são binárias (construção de projetos)

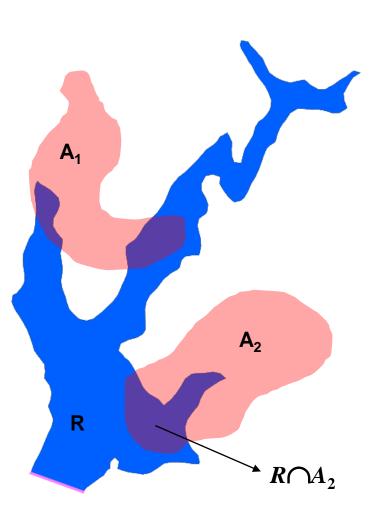
Its Type BestSoln	BestBound	Sols	Add	Del	Gap	GInf	Time
	-2788.002047	1			65.88%	0	3
d -962.364676	-2788.002047	2			65.48%	0	5
c 202 -964.737885	-2189.044212	3	162	12	55.93%	0	254
c 211 -1003.648799	-2189.044212	4	165	8	54.15%	0	257
c 681 -1005.510611	-1970.531736	5	395	68	48.97%	0	357
c 1227 -1057.800951	-1927.210543	6	850	24	45.11%	0	450
c 1847 -1061.858970	-1927.210543	7	891	57	44.90%	0	510
c 2131 -1065.413139	-1927.210543	8	986	48	44.72 %	0	537
c 2365 -1071.025412	-1927.210543	9	1117	57	44.43%	0	561
c 2374 -1079.036713	-1927.210543	10	1117	60	44.01%	0	562
c 2375 -1079.041842	-1927.210543	11	1117	59	44.01%	0	562
c 2933 -1080.858985	-1920.437975	12	1261	60	43.72%	0	618
* 69604 -1082.438786	-1322.271580	13	26297	48	18.14%	0	4732
c 70148 -1082.994316	-1322.271580	14	25977	48	18.10%	0	4739
* 99338 -1083.885104	-1193.132872	15	32877	50	9.16%	0	5873
* 99741 -1083.978643	-1193.132872	16	32512	51	9.15%	0	5874
* 100028 -1084.299310	-1193.132872	17	32471	53	9.12%	0	5883
* 106334 -1090.261865	-1190.654783	18	33489	42	8.43%	0	6093
* 109918 -1090.264934	-1190.654783	19	29943	42	8.43%	0	6094
c 123950 -1090.761004	-1156.713138	20	32243	46	5.70%	0	6502
240200 -1090.814448	-1132.530443	21	47171	46	3.68%	13	8916
270200 -1090.814448	-1125.579859	21	45425	17	3.09%	51	9531
STOPPING - MIPRELSTOP	target reached	(MIPR	ELSTOP=0).03 ga	p=0.02973	35).	

21 alternativas de divisão de quedas encontradas no processo de busca, em menos de 3h

Number of integer feasible solutions found is 21 Best integer solution found is -1090.814448

Best bound is -1124.242108

Otimização: parte socioambiental sept Norte Fl


- Restrições sobre o modelo de otimização
 - restrições aditivas: a soma de atributos de projetos selecionados deve satisfazer restrição de mínimo ou máximo
 - Exemplos de uso:
 - A área total inundada deve ser menor que 100 km².
 - A total de população relocada pelo conjunto de projetos deve ser menor a 1000 indivíduos.
 - Conservação de representatividade de áreas ambientalmente sensíveis (integração com o Blueprint)

Geração de Candidatos

Métricas de Interferências

Opções de cálculo de métricas

1. Valor Absoluto

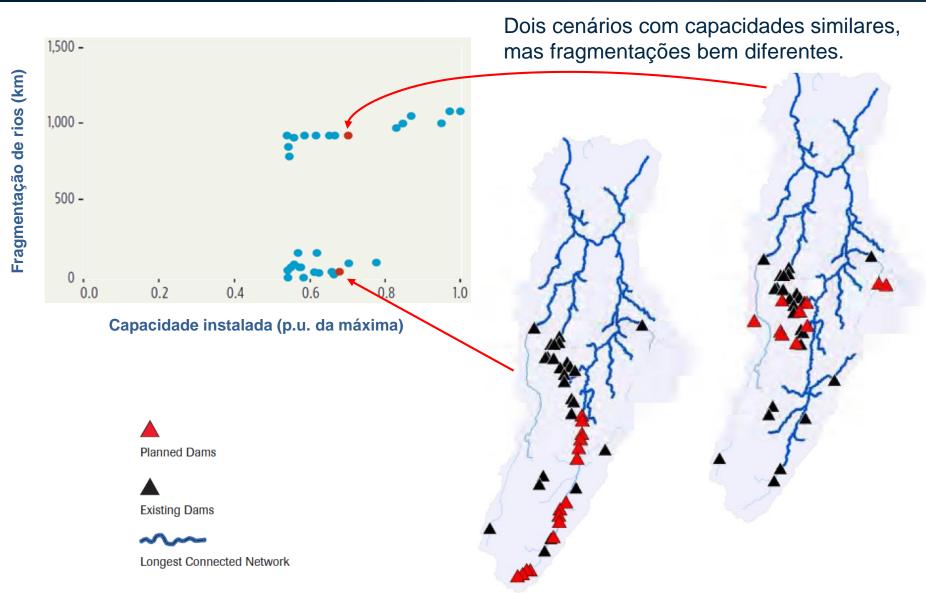
$$m(R) = w_m \left[v(A_1) \cdot R \cap A_1 + v(A_2) \cdot R \cap A_2 \right] / (A_1 + A_2)$$

2. Densidade

$$m(R) = w_m [v(A_1) \cdot R \cap A_1 + v(A_2) \cdot R \cap A_2]$$

m(R) métrica do reservatório R

 w_m peso da métrica m


 $v(A_i)$ valor na área de interesse i

 $R \cap A_i$ área da interseção entre R e A_i

Fragmentação de rios

Fragmentação de rios

- A construção de barragens de usinas hidrelétricas funciona como barreira ao fluxo de espécies aquáticas na bacia, com possíveis impactos ambientais (ex. interrupção de rotas migratórias).
- Esta foi a motivação para as restrições sobre a fragmentação dos rios.
 - Diversas restrições podem ser informadas sobre a <u>máxima fragmentação</u> tolerável para toda a bacia ou por sub-bacias. O valor a usar depende de estudos das espécies aquáticas na bacia.
 - Barreiras naturais, como cachoeiras podem ser informadas. Usinas com dispositivos de transposição de peixes (ex. escadas) também (reduzem ou eliminam a fragmentação do rio)
 - Ao invés da soma de quilômetros de rios livres, a restrição pode ser escrita sobre o <u>máximo trecho de rio livre</u>
 - A mesmo restrição "topológica" pode ser usada para modelar transporte de sedimentos

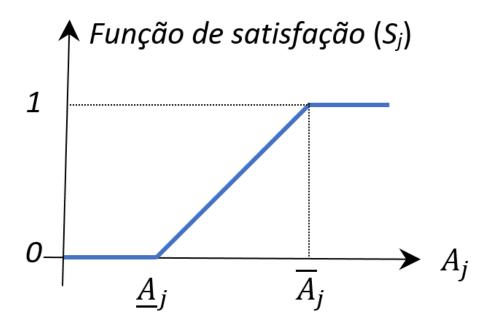
Alteração de vazões naturais

- A construção de hidrelétricas com reservatórios altera o perfil das vazões naturais no rio.
- A inclusão de hidrógrafas ambientais para manutenção da integridade biótica é possível no HERA
 - hidrógrafas para mínimas ou máximas vazões mensais
 - restrições tanto para usinas "pé de barragem" como nos arranjos derivativos no mesmo rio ou com transposição de água entre bacias.
 - Integração feita com estudos energéticos (tradeoff entre perda energética x benefício para o meio ambiente)

Satisfação de atributos

Maximizar receita de venda de energia e capacidade – custo de investimentos para construir os projetos Sujeito a:

- 1) Restrições do HERA (energia, balanço hídrico, limites operativos, etc.)
- 2) Atendimento de uma medida S^* da satisfação dos atributos de uma alternativa de divisão de quedas:

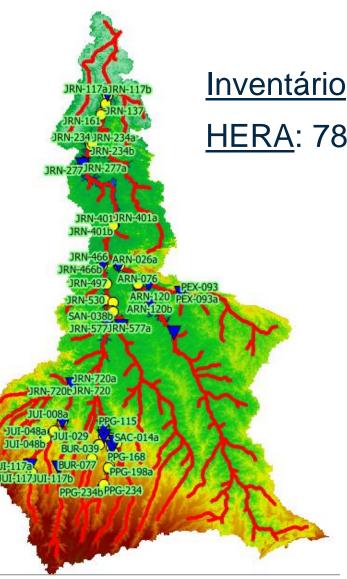

$$\lambda S_{med} + (1 - \lambda) S_{min} \ge S^*$$

- S_{med} é a satisfação média para todos os atributos;
- S_{min} é a satisfação mínima dentre todos os atributos;
- S* é a medida da satisfação aceitável

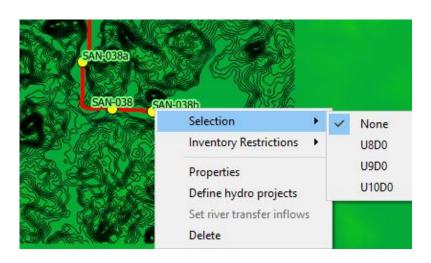
Satisfação de atributos

- $A_i = \sum_{i=1}^{N} a_{i,j} x_i$ \leftarrow relaciona métrica com decisões de investimentos
- x_i é uma variável binária (define a construção do projeto)
- $a_{i,j}$ é o valor do atributo j do projeto i

Temário



- Visão geral
- Engenharia
 - Geração de alternativas
 - Dimensionamento
 - Cálculo de volumes & orçamento
 - Modelagem 3D de Arranjos
- Meio Ambiente
 - AAI & Blueprint de conservação
 - Métricas e restrições socioambientais
- ► Estudo de caso
- Conclusões



Inventário: 30 eixos e 36 alternativas de queda

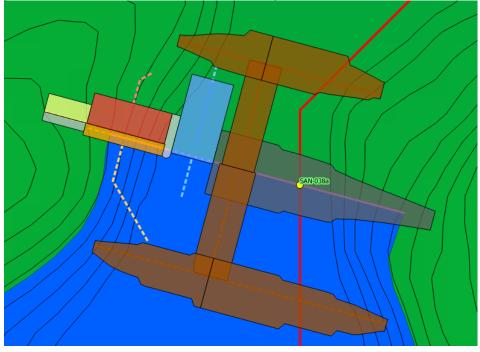
HERA: 78 eixos e 298 alternativas de queda

3 alternativas de queda por eixo, no mínimo

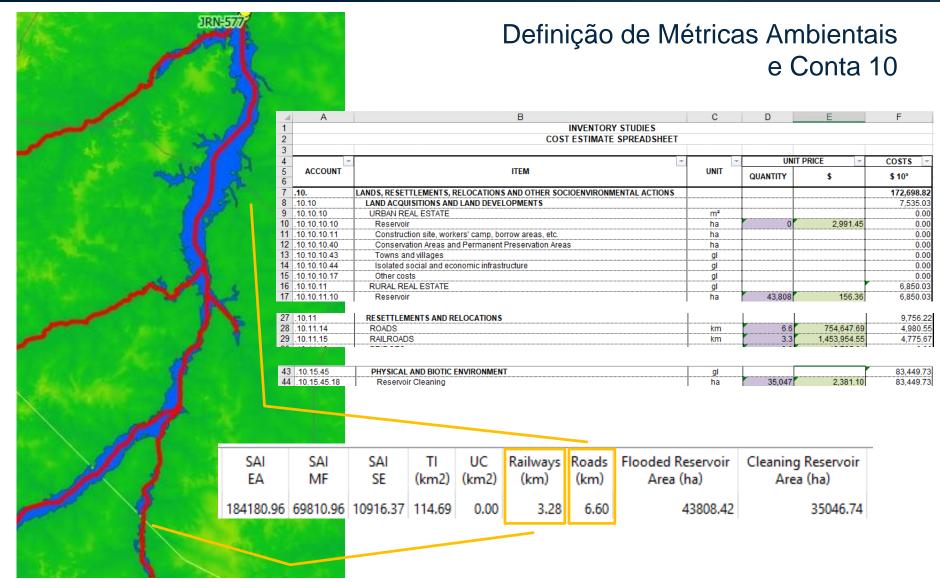
Definição de Características Energéticas

	Project ID	Project name	Reservoir head (m)			Turbined inflow (m3/s)	Capacity factor (0 to 1)			Total cost (MM \$)	Unit cost (\$/kW)	Water level (m)	Reservoir area (km2)
1	484	U10D0	10.00	0.00	10.00	1054.47	0.55	89.74	432.34	291.92	3253.11	241.00	43.34
2	482	U8D0	8.00	0.00	8.00	1054.47	0.55	72.08	347.26	312.08	4329.90	239.00	25.22
3	483	U9D0	9.00	0.00	9.00	1054.47	0.55	80.91	389.80	271.55	3356.42	240.00	38.67

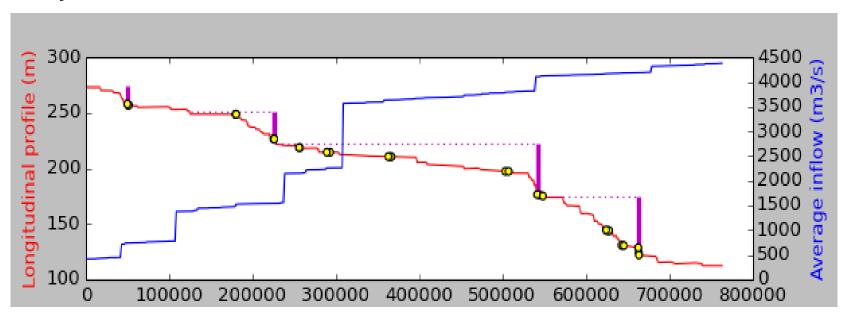
Vazões de Projeto Reservoir data Reservoir charts Engineering Env. flows Project Project Spillway Stilling basin 1st phase 2st phase Powerhouse Average inflow (m3/s) (m3/s)walls (m3/s) diversion (m3/s) diversion (m3/s) deck (m3/s) name U10D0 579.96 2295.00 1715.00 1715.00 1627.00 2295.00 482 U8D0 579.96 2295.00 1715.00 1715.00 1627.00 2295.00 483 2295.00 1715.00 1715.00 1627.00 U9D0 579.96 2295.00



Engineering model properties


Template PhKapc HsComp DmRock SpCbas DvRbed Layout FtRbedLcfd SpLbed InLspw Hydropower plant with a foot of the dam layout with rockfill dam, controlled spillway with stilling basin on the left side of the riverbed, a compact hydraulic system with a concrete kaplan powerhouse placed on the left side of the spillway and a riverbed diversion scheme with a longitudinal cofferdam without sluiceways Description

Arranjos Selecionados



Simulações Preliminares, ainda sem restrições ambientais e sem remover projetos eventualmente em terras indígenas

<u>Inventário</u>: potencial de 8.500 MW em 13 eixos selecionados <u>HERA</u>: potencial de 8.000 MW em 14 eixos selecionados

Partição de Quedas no Rio Juruena

Se os projetos em Terras Indígenas (indicados no mapa) forem desconsiderados, o potencial de cerca de 8000 MW em 14 aproveitamentos é reduzido para 3147 MW em somente 2 projetos.

 O descarte a priori de potencial energético em terras indígenas tem sido a prática

Esta prática deveria ser modificada por um arranjo em que as comunidades indígenas interessadas possam escolher livremente se desejam se beneficiar da renda gerada pelas UHEs – uma prática corrente em países como EUA e Canadá

Temário

- Visão geral
- Engenharia
 - Geração de alternativas
 - Dimensionamento
 - Cálculo de volumes & orçamento
 - Modelagem 3D de Arranjos
- Meio Ambiente
 - AAI & Blueprint de conservação
 - Métricas e restrições socioambientais
- Estudo de caso
- ▶ Conclusões

Conclusões

- Um ambiente computacional para suporte à decisões em estudos de alternativas de aproveitamentos hidroelétricos
- Análise de tradeoffs entre aspectos técnico-econômicos e socioambientais dessas alternativas
- Aumento de produtividade, participação efetiva entre as partes, construção de diálogo a partir de uma linguagem comum baseada em critérios objetivos
- ► Instrumento de negociação entre partes
- Uma plataforma computacional aberta para futuras contribuições (Engenharia e meio-ambiente)

Conclusões

- A dimensão socioambiental passa a fazer parte do planejamento energético desde o início. A AAI, por exemplo, só é feita hoje para a divisão de quedas escolhida
- ➤ O modelo de otimização do HERA é o mesmo utilizado no planejamento da expansão do setor elétrico: hidroelétricas selecionadas complementam eólicas, solares, térmicas, etc.
- Estudo de caso da bacia do Juruena em fase de conclusão
- Abrangência global: o HERA vem sendo utilizado em projetos com a TNC em diversas bacias no mundo: "Build the right dams. Build the dams right."