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Stochastic models for energy are mainstream 

 Americas: all countries in South and Central America, United States, Canada and Dominican Republic 

 Europe: Austria, Spain, France, Scandinavia, Belgium, Turkey and the Balkans region 

 Asia: provinces in China (including Shanghai, Sichuan, Guangdong and Shandong), India, Philippines, 
Singapore, Malaysia, Kirgizstan, Sri Lanka, Tajikistan and Vietnam 

 Oceania: New Zealand 

 Africa: Morocco, Tanzania, Namibia, Egypt, Angola, Sudan, Ethiopia and Ghana 
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70+ countries 

Starting 2015, World Bank 
uses stochastic planning 
and operation models for 
project evaluation of 
member countries 



Application example 
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► Current stochastic optimization applications 

 Multistage G&T scheduling – w/ Ricardo Perez 

 Integrated G&T expansion 
planning – w/ Lucas Okamura  

► Recent developments 
 Analytic operating cost function 

for multiscale dispatch – w/ Camila Metello  

 Risk aversion modelling 
(CVaR and robust approaches) – w/ L.C.Costa 

 Parameter uncertainty of 
stochastic models – w/ Bernardo Bezerra 

 Optimal expansion strategies – w/ Fernanda Thomé 

Topics 
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DB environment 

Stochastic optimization tools 
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OptGen 
Integrated generation and 
bulk transmission planning 

SDDP 
Multistage stochastic 

G&T scheduling   

NetPlan 
Detailed T planning 

Multiple dispatch scenarios 
N-1 criterion 

OptFlow 
AC OPF and VaR 

planning 



SDDP: stochastic models 

 Hydro inflows and renewable generation (wind, solar, biomass etc.) 

 Multivariate stochastic model (PAR(p)) 

 Inflows: macroclimatic events (El Niño), snowmelt and others 

 Spatial correlation of wind, solar and hydro 

 External renewable models can be used to produce scenarios 

 Uncertainty on fuel costs and load growth rates 

 Markov chains (hybrid SDDP/SDP model) 

 Uncertainty on energy “spot” prices 

 Markov chains 

 Intra-stage load variability and G&T equipment outages 

 Monte Carlo sampling 
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SDDP: representation of energy systems 

 Weekly or monthly time steps; 25+ years horizon 

 Intra-stage: 5-21 load blocks to 168-730 hours 

 Detailed generation modeling: hydro, fossil fuel plants and renewables 

 Interconnections or full transmission network: DC with losses and AC 

 Price-responsive load by region or by bus 

 Fuel production, storage and transportation network 

 Water-energy nexus: water supply, irrigation, flood control etc.  
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Stochastic Dual DP 

𝛼𝛼𝑡𝑡(𝑣𝑣𝑡𝑡) 

𝑣𝑣𝑡𝑡 

FCF 

SDDP is similar to 
multistage Benders 

decomposition 

1. Piecewise linear approximation of FCF 
2. Simulation of system operation to find “interesting” states 
3. Probabilistic convergence criterion 



SDDP algorithm 

Iterative procedure  

1. forward simulation: finds new states & upper bound (UB) 

2. backward recursion: updates FCFs & lower bound (LB) 

3. convergence check (LB in UB’s confidence interval) 

Distributed processing 

 The one-stage subproblems in both forward and backward steps 
can be solved simultaneously, which allows the application of 
distributed processing 

 SDDP has been running on computer networks since 2001; from 
2006, in a cloud system with AWS 
 We currently have 500 virtual servers with 16 CPUs and 900 GPUs each 
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SDDP: distributed processing of forward step 

11 

t = 1 t = 2 t = 3 t = T-1 t = T 



SDDP: distributed processing of backward step 
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Example of SDDP run with distributed processing 

 Installed capacity: 125 GW 

 160 hydro (85 with storage), 140 termal 
plants (gas, coal, oil and), 8 GW wind, 5 
GW biomass, 1 GW solar  

 Transmission network: 5 thousand buses, 
7 thousand circuits 

State variables: 85 (storage) + 160 x 2 = 320 
(AR-2 past inflows) = 405  
Monthly stages: 120 (10 years) 
Load blocks: 3 

Forward scenarios: 1,200 
Backward branching: 30 
Number of SDDP iterations: 10 
43 million LPs 

Total execution time: 90 minutes 
25 servers with 16 processors each 
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Overview 

► Current stochastic optimization applications 

 Multistage G&T scheduling 

 Integrated G&T expansion planning 

► Recent developments 

 Analytic operating cost function for multiscale dispatch  

 Risk aversion modelling (CVaR and robust approaches) 

 Parameter uncertainty of stochastic models 

 Generation expansion strategies 
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Investment 
Problem (MIP) 

Scheduling 
Problem (SDDP) 

Check 
convergence 

Candidate 
plan 

Expected 
Operation 

Cost 

Benders cut 

Optgen: generation & transmission planning 
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Example: Bolivia 
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Buses: 141
230 kV 29
115 kV 72
69 kV 40

Circuits 127
Transmission lines: 100
Transformes: 27

Transmission System



System spot prices – no reinforcements 

17 
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Produced by a transmission 

constrained stochastic SDDP run 

Very high spot prices indicate 

reinforcement needs starting 2018 



Generation & transmission expansion plan 

Study parameters 

 Horizon: 2016-2024 (108 stages) 

 123 candidate projects per year (x 9 years)  
 17 termal plants (natural gas, combined and open cycle)  

 7 hydro plants 

 7 renewable projects (wind farms and solar) 

 92 transmission lines and transformers 

Computational results 

 Number of Benders iterations (investment module): 53 

 Average number of SDDP iterations (stochastic scheduling for each candidate plan in 
the Benders scheme): 5 
 Forward step: 100 scenarios 

 Backward step: 30 scenarios (“branching”) 

 Total execution time: 2h 37m 
 2 servers x 16 processors 
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Spot prices - after optimal expansion 

19 

0

10

20

30

40

50

60

70

20
16

/0
1

20
16

/0
3

20
16

/0
5

20
16

/0
7

20
16

/0
9

20
16

/1
1

20
17

/0
1

20
17

/0
3

20
17

/0
5

20
17

/0
7

20
17

/0
9

20
17

/1
1

20
18

/0
1

20
18

/0
3

20
18

/0
5

20
18

/0
7

20
18

/0
9

20
18

/1
1

20
19

/0
1

20
19

/0
3

20
19

/0
5

20
19

/0
7

20
19

/0
9

20
19

/1
1

20
20

/0
1

20
20

/0
3

20
20

/0
5

20
20

/0
7

20
20

/0
9

20
20

/1
1

20
21

/0
1

20
21

/0
3

20
21

/0
5

20
21

/0
7

20
21

/0
9

20
21

/1
1

20
22

/0
1

20
22

/0
3

20
22

/0
5

20
22

/0
7

20
22

/0
9

20
22

/1
1

20
23

/0
1

20
23

/0
3

20
23

/0
5

20
23

/0
7

20
23

/0
9

20
23

/1
1

20
24

/0
1

20
24

/0
3

20
24

/0
5

20
24

/0
7

20
24

/0
9

20
24

/1
1

SR
M

C
 ($

/M
W

h)
 



Optimal generation expansion plan 
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Transmission reinforcements 
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Lines whose loadings are higher than 

or equal to 75% are colored in red 



In summary… 

► Extensive experience with the application of stochastic 
scheduling and planning models to large-scale systems 
 SDDP/SDP and Benders decomposition 

► Detailed modeling of generation, transmission, fuel storage 
and distribution, plus load response 

► Multivariate AR models + plus Markov chains used to 
represent uncertainties on inflows, renewable production, fuel 
costs, equipment availability and load 

► Distributed processing is effective for reducing run times 
 With cloud computing, it is also cost-effective 
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Overview 

► Current stochastic optimization applications 

 Multistage G&T scheduling 

 Integrated G&T expansion planning 

► Recent developments 

 Analytic operating cost function for multiscale dispatch  

 Risk aversion modelling (CVaR and robust approaches) 

 Parameter uncertainty of stochastic models 

 Generation expansion strategies 
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Motivation 

► The very fast growth of renewables has raised concerns about 

operating difficulties when they are integrated to the grid 

 For example, “wind spill” in the Pacific Northwest, need for higher 

reserve margins due to the variability, hydro/wind/solar portfolio etc. 

► The analysis of these issues requires 

an hourly (or even finer) resolution 

in the intra-stage operation model 

    ⇒ much higher execution times 
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Standard one-stage operation problem (simplified) 

 Objective: Min immediate cost + future cost 

 𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑐𝑐𝑗𝑗𝑔𝑔𝑡𝑡𝜏𝜏𝑗𝑗𝑗𝑗𝜏𝜏  +𝛼𝛼𝑡𝑡+1(𝑣𝑣𝑡𝑡+1,𝑎𝑎𝑡𝑡+1,𝑖𝑖) 

 Storage balance 

 𝑣𝑣𝑡𝑡+1,𝑖𝑖 = 𝑣𝑣𝑡𝑡,𝑖𝑖 + 𝑎𝑎𝑡𝑡,𝑖𝑖 − 𝑢𝑢𝑡𝑡,𝑖𝑖     ∀𝑀𝑀 = 1, … , 𝐼𝐼 

 Power balance  

 ∑ 𝑔𝑔𝑡𝑡𝜏𝜏𝑗𝑗𝑗𝑗 + ∑ 𝑒𝑒𝑡𝑡𝜏𝜏𝑖𝑖𝑖𝑖 = �̂�𝑑𝑡𝑡𝜏𝜏 − ∑ �̂�𝑟𝑡𝑡𝜏𝜏𝑛𝑛𝑛𝑛    ∀𝜏𝜏 = 1, … ,𝒯𝒯 

 Future cost function (FCF) 

  𝛼𝛼𝑡𝑡+1 ≥ ∑ 𝜋𝜋𝑣𝑣𝑖𝑖𝑘𝑘 𝑣𝑣𝑡𝑡+1,𝑖𝑖 +𝑖𝑖 ∑ 𝜋𝜋𝑎𝑎𝑖𝑖𝑘𝑘 𝑎𝑎𝑡𝑡+1,𝑖𝑖 +𝑖𝑖 𝛿𝛿𝑘𝑘     ∀𝑘𝑘 = 1, … ,𝐾𝐾 
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Relaxation schemes 
for FCF constraints 



Idea: analytical representation of immediate cost  

 Objective function (min immediate cost + future cost) 

 𝑀𝑀𝑀𝑀𝑀𝑀 𝛽𝛽𝑡𝑡 𝑒𝑒𝑡𝑡 + 𝛼𝛼𝑡𝑡+1( 𝑣𝑣𝑡𝑡+1,𝑖𝑖 ) 

 Storage balance 

 𝑣𝑣𝑡𝑡+1,𝑖𝑖 = 𝑣𝑣𝑡𝑡,𝑖𝑖 + 𝑎𝑎𝑡𝑡,𝑖𝑖 − 𝑢𝑢𝑡𝑡,𝑖𝑖     ∀𝑀𝑀 

 Future cost function 

  𝛼𝛼𝑡𝑡+1 ≥ ∑ 𝜋𝜋𝑣𝑣𝑖𝑖𝑘𝑘 𝑣𝑣𝑡𝑡+1,𝑖𝑖 +𝑖𝑖 ∑ 𝜇𝜇𝑖𝑖𝑘𝑘𝑎𝑎𝑡𝑡+1,𝑖𝑖 +𝑖𝑖 𝛿𝛿𝑘𝑘     ∀𝑘𝑘 

 Immediate cost function  

 𝛽𝛽𝑡𝑡 ≥ 𝜋𝜋𝑒𝑒
𝑝𝑝𝑒𝑒𝑡𝑡 + 𝛿𝛿𝑝𝑝     ∀𝑝𝑝 = 1, … ,𝑃𝑃 
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• Problem size is the same 
for any number of load 
blocks 

• The same relaxation 
techniques used for 𝛼𝛼𝑡𝑡+1 
can also be applied to 𝛽𝛽𝑡𝑡   



Pre-calculation of 𝛽𝛽𝑡𝑡 𝑒𝑒𝑡𝑡 : single area  

𝛽𝛽𝑡𝑡 𝑒𝑒𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑐𝑐𝑗𝑗𝑔𝑔𝑡𝑡𝜏𝜏𝑗𝑗𝑗𝑗𝜏𝜏   

 ∑ 𝑒𝑒𝑡𝑡𝜏𝜏 =𝜏𝜏 𝑒𝑒𝑡𝑡 ← coupling constraint 

 ∑ 𝑔𝑔𝑡𝑡𝜏𝜏𝑗𝑗 + 𝑒𝑒𝑡𝑡𝜏𝜏 =𝑗𝑗 �̂�𝑑𝑡𝑡𝜏𝜏 − ∑ �̂�𝑟𝑡𝑡𝜏𝜏𝑛𝑛𝑛𝑛  

  𝑔𝑔𝑡𝑡𝜏𝜏𝑗𝑗 ≤ 𝑔𝑔𝑗𝑗 
Solution approach 

1. If we assign a “water value” (Lagrangian) to the hydro generation, the LP is decomposed 
into 𝜏𝜏 = 1, … ,𝒯𝒯 hourly subproblems with 𝐽𝐽 thermal plants + 1 dummy plant (hydro) 

2. The subproblems can be solved by inspection (economic loading order) ⇒ they can be 
decomposed into 𝐽𝐽 + 1 generation adequacy subproblems, where we just compare available 
capacity with (demand – renewables) (arithmetic operation) 

3. Instead of 𝐽𝐽 + 1 generation adequacy subproblems, we only need to solve two: one with the 
hydro first (cheapest), another last; the results for all the other intermediate hydro positions 
are obtained by convex combinations of those two ⇒ computational effort is negligible  
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Pre-calculation of 𝛽𝛽𝑡𝑡 𝑒𝑒𝑡𝑡 : multiple areas 

► In the case of 𝑀𝑀 areas, the supply adequacy problem becomes a max-

flow, which is solved by max flow-min cut 

 GPUs are suitable for Max {2𝑀𝑀 linear constraints} 

⇒ computational effort is still small 

► Ongoing research 

 Representation of storage (e.g. batteries) in the hourly problem 

• The analytical approximation still applies, but the max flow problem becomes larger 

due to time coupling 

• Advanced max flow techniques used in machine learning being tested 

 New formulation that allows the representation of unit commitment (per block of 

hours) and an (approximate) transmission network  
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Watch Camila’s 
presentation 

Speedups of two orders 
of magnitude!     



Overview 

► Current stochastic optimization applications 

 Multistage G&T scheduling 

 Integrated G&T expansion planning 

► Recent developments 

 Analytic operating cost function for multiscale dispatch  

 Risk aversion modelling (CVaR and robust approaches) 

 Parameter uncertainty of stochastic models 

 Generation expansion strategies 
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Three approaches to risk aversion 

1. Penalize supply failures 

 Economic cost of failure + “risk premium” 

2. Ensure feasibility for a set of critical scenarios 

 Hybrid robust/stochastic optimization 

3. CVaR on costs (Shapiro and others) 

 Give more weight to higher costs in the SDDP recursion 

 Equivalent to skewing the conditioned inflow distribution in SDDP’s 

backward step 
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Approach #1: penalize supply failures 
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Challenge: reliability criterion 
1. Expected energy not supplied 
(EENS) does not reflect risk of failure 
2. On the other hand, risk of failure 
does not capture severity 



Proposed criterion: CVaR of EENS 

► For example, the expected energy not supplied in the 1% quantile should 
not exceed 5% of load 
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Risk premium 
function 

Associated to  
CVaR 

shift = 𝒃𝒃 

Slope = p* = 
𝝁𝝁
𝜶𝜶

  

$ 

𝑟𝑟 

Economic cost 

slope = 𝛿𝛿 

𝑏𝑏 𝑦𝑦 

Piecewise cost 
function 



SDDP with CVaR on supply reliability 

33 



Approach #2: Risk Aversion Surface (SAR) 
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A version of SAR was used for 
several years to represent risk 
aversion in Brazil’s operation 

𝑣𝑣2

𝑣𝑣1

β(𝑣𝑣1,𝑣𝑣2)  
=  0

β(𝑣𝑣1,𝑣𝑣2)  
>  0

Risk Aversion Surface (SAR)



Approach #3: CVaR on operation cost 

► New objective function of the one-stage problem 

𝑀𝑀𝑀𝑀𝑀𝑀 𝜆𝜆𝐸𝐸 𝑧𝑧 + 1 − 𝜆𝜆 𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝑞𝑞(𝑧𝑧) 

► The CVaR-cost criterion is easy to implement in SDDP, 

because it is equivalent to changing the weights of the 

conditioned inflow scenarios in the backward recursion 
 This interpretation also allows a simple and exact calculation of the 

upper bound in the SDDP algorithm with CVaR, which had been a 

concern for some time    
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Comparison of risk aversion approaches 
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Approach→ 
Attribute↓ 

CVaR-Risk SAR CVaR-cost 

Easy to understand? Yes Yes Sort of… 

Represents reliability targets directly? Yes Yes No 

Easy to calibrate? Medium Yes Medium 

Additional computational effort 
with respect to standard SDDP 

High Medium Low 

Watch Luiz Carlo’s 
presentation to see the 
real-life case studies!     



Overview 

► Current stochastic optimization applications 

 Multistage G&T scheduling 

 Integrated G&T expansion planning 

► Recent developments 

 Analytic operating cost function for multiscale dispatch  

 Risk aversion modelling (CVaR and robust approaches) 

 Parameter uncertainty of stochastic models 

 Generation expansion strategies 
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Motivation 

► SDDP assumes that the PAR(p) stochastic model parameters (mean, 

variance etc.) are known, i.e. they are the population values 

► However, those parameters are estimated from a historical record and 

there is uncertainty around their values ⇒ This means that the stochastic 

optimization results may be “optimistic” 

► The concern about parameter uncertainty has increased with the 

construction of wind generation, because historical records are much 

smaller 
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Generation of inflow scenarios with parameter uncertainty 

39 



Impact of parameter uncertainty on operation costs 
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Joint parameter estimation and stochastic optimization 
(Rockafellar) 

► Model parameter selection 

 Calculate operating policies which are “taylor made” for each set of inflow 
model parameters 𝑚𝑚 =  1, … ,𝑀𝑀, and simulate system operation with 
inflow scenarios produced by all the other parameters 

 Use a minimax criterion (or CVaR-cost) on the 𝑀𝑀 ×  𝑀𝑀 operating cost 
matrix to select the most adequate parameter set 

 The selected set of parameters is “drier” 
than the estimates from the historical record 

► Ongoing research 

 Represent all the 𝑀𝑀 alternative inflow models 
 as part of the SDDP recursion 

• Interesting similarities to CVaR-cost in risk aversion  
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Watch 
Bernardo’s 

presentation! 



Overview 

► Current stochastic optimization applications 

 Multistage G&T scheduling 

 Integrated G&T expansion planning 

► Recent developments 

 Analytic operating cost function for multiscale dispatch  

 Risk aversion modelling (CVaR and robust approaches) 

 Parameter uncertainty of stochastic models 

 Generation expansion strategies 
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Motivation 

► Expansion plans cannot capture an important attribute of 
different generation technologies: construction time  
 Hydro: 6+ years; thermal (gas): 4+ years; renewables: 1-2 years 

► The ability to adjust construction of new generation to evolving 
conditions is especially relevant for developing economies 
 High, but very uncertain, load growth 

 In some countries, hydro storage is an important factor for 
reinforcements (e.g. recent three-year drought in Brazil) 

 Uncertainty on fuel costs also favors renewables 

⇒ Interest in extending SDDP to represent investment variables   
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Development of planning strategies 

► Markov chains are used to represent uncertainty in fuel costs and 

load growth rates (hybrid SDDP/SDP model) 

► Handling nonconvexities due to binary investment decisions: 

1. Hybrid plan/strategy 

 Hydro is a binary planning decision 

• Long construction times make plan ≈ strategy 

 Renewables are strategic continuous decisions 

2. Tighter Lagrangian cuts in the SDDP recursion (Thomé 2013)    

► Recent breakthrough: The excellent paper by Zou, Ahmed and Sun 

 The Lagrangian cuts are tight for binary variables!   
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Watch 
Fernanda’s 

presentation! 



In summary… 

► Real-life applications of risk aversion in the energy area 

► Multiscaling and parameter uncertainty are important issues 

for analysis of renewables 

► Planning strategies are also important for renewables 

 Representation of construction times in multistage stochastic 

optimization 

► Lagrangian + binary state variables are a very interesting new 

path for multistage stochastic planning 
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Topics not covered (lack of time) 

 Representation of nonconvexities using Support Vector 
Regression (J.A.Dias) 

 Power market modeling with multistage stochastic Nash 
Equilibrium (J.Garcia) 

 Expansion planning with risk aversion (CVaR-cost) on operation 
(G.Rocha) 

 Extension of Markov chains to fuel cost and demand growth 
uncertainties (R.Chabar)   

 New techniques for multi-area reliability evaluation (G.Oliveira)  
 Cross Entropy + Monte Carlo Markov Chain 

 Allows feasibility cuts for planning models 
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THANK YOU 
OBRIGADO 
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