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Stochastic models for energy are mainstream

70+ countries

Starting 2015, World Bank
uses stochastic planning
and operation models for
project evaluation of
member countries

= Americas: all countries in South and Central America, United States, Canada and Dominican Republic
= Europe: Austria, Spain, France, Scandinavia, Belgium, Turkey and the Balkans region

= Asia: provinces in China (including Shanghai, Sichuan, Guangdong and Shandong), India, Philippines,
Singapore, Malaysia, Kirgizstan, Sri Lanka, Tajikistan and Vietnam

. Oceania: New Zealand

= Africa: Morocco, Tanzania, Namibia, Egypt, Angola, Sudan, Ethiopia and Ghana




Application example

Power Market Trader
Nordic power market outlook
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The new SDDP Nordic

3 YEAR FORECASTS WITH IMPROVED STACK AND HYDROLOGY

In April 2008 we presented the first SDDP forecast for the Mord Pool market at the annual Montel spring
conference. Our estimate was very bearish for May compared with the market, but more bullish later in
the summer. It turned out that the delivered price for May was even lower than we forecasted. After that
head start our medium term forecast have become an important reference for the Nordic market, most
recently when the market really turmed bearish this June.

Qur goal is to always perform better and deliver better services to our clients, and over the years we have
seen some areas of improvement. Most notably is the new price areas in both Norway and Sweden, but
ve also wanted a better coupling between our hydrological (HBV) models and a full revision of the stack.

Hence, over the last year we have put a lot of effort in recalibrating the SDDP model at the same time
as publishing our weekly forecast. Last week we published our first forecast with the recalibrated SDDP
MNordic. The SDDP methodology is developed by PSR in Brazil, a strategic partner of Thomson Reuters.

NEW FEATURES

The main new feature of the

new SDDP model is a detailed
modeling of all the 12 Nord Pool
price areas. The historical inflow
series have been updated aswell,
based on the years 1981 to 2007.
However, from week 1 to week

40 in the SDDP forecast we use
the latest HEV long term forecast
based on the latest ECO0 ens
the first two weeks and historic
temperatures and precipitation
thereafter. There is good match
between the price areas and the
hydro regions, although there are
some minor deviations between
NO5S and the corresponding hydro
region (NO6 in the map over hydro
regions).

We have updated the load using
weekly load levels that has been
temperature corrected against

a temperature normal for each
region (for NO1-5 and SE1-4 we
=thatthe have used one representative
station for each of the areas).



Topics

» Current stochastic optimization applications

= Multistage G&T scheduling — w/ Ricardo Perez

&

= Integrated G&T expansion

planning — w/ Lucas Okamura

» Recent developments

= Analytic operating cost function

for multiscale dispatch — w/ Camila Metello

= Risk aversion modelling |
(CVaR and robust approaches) — w/ L.C.Costa

= Parameter uncertainty of

stochastic models — w/ Bernardo Bezerra '
= Optimal expansion strategies — w/ Fernanda Thomé :




Stochastic optimization tools
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SDDP: stochastic models

Hydro inflows and renewable generation (wind, solar, biomass etc.)

Multivariate stochastic model (PAR(p))
Inflows: macroclimatic events (El Niflo), snowmelt and others
Spatial correlation of wind, solar and hydro

External renewable models can be used to produce scenarios
Uncertainty on fuel costs and load growth rates
Markov chains (hybrid SDDP/SDP model)
Uncertainty on energy “spot” prices

Markov chains

Intra-stage load variability and G&T equipment outages

Monte Carlo sampling

~ PSR




SDDP: representation of energy systems

Weekly or monthly time steps; 25+ years horizon
Intra-stage: 5-21 load blocks to 168-730 hours

Detailed generation modeling: hydro, fossil fuel plants and renewables

Interconnections or full transmission network: DC with losses and AC

Price-responsive load by region or by bus

Fuel production, storage and transportation network

Water-energy nexus: water supply, irrigation, flood control etc.




Stochastic Dual DP

1. Piecewise linear approximation of FCF
2. Simulation of system operation to find “interesting” states
3. Probabilistic convergence criterion

Cal

ar(ve)

SDDP is similar to
multistage Benders
decomposition

FCF




SDDP algorithm

Iterative procedure
forward simulation: finds new states & upper bound (UB)
backward recursion: updates FCFs & lower bound (LB)
convergence check (LB in UB’s confidence interval)
Distributed processing

The one-stage subproblems in both forward and backward steps
can be solved simultaneously, which allows the application of
distributed processing

SDDP has been running on computer networks since 2001; from
2006, in a cloud system with AWS

We currently have 500 virtual servers with 16 CPUs and 900 GPUs each

~ PSR




SDDP: distributed processing of forward step
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SDDP: distributed processing of backward step
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Example of SDDP run with distributed processing

PSR

Installed capacity: 125 GW

160 hydro (85 with storage), 140 termal
plants (gas, coal, oil and), 8 GW wind, 5
GW biomass, 1 GW solar

Transmission network: 5 thousand buses,

7 thousand circuits

State variables: 85 (storage) + 160 x 2 = 320
(AR-2 past inflows) = 405

Monthly stages: 120 (10 years)
Load blocks: 3

Forward scenarios: 1,200
Backward branching: 30
Number of SDDP iterations: 10
43 million LPs

Total execution time: 90 minutes
25 servers with 16 processors each
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Overview

Integrated G&T expansion planning




Optgen: generation & transmission planning
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Example: Bolivia

S Transmission System

Buses: 141

230 kV 29

115 kV 72

69 kV 40

" i Circuits 127
1R Transmission lines: 100
| Transformes: 27

25

=~ ) ‘ : Forecasted Load

A~ N - -
jua "‘V . 23
o BuoBUs : ] j 22
pferes s 20
"\ Ty Urubé' —\y Santa Cruz J 20 19
? 3 Santa Crz_ G% o
3 / 18
1 > 17
- 16
vl / 15
g Suore p ki 15 14
o : 13
ey % 2 12
5) i y
10
¥ § ‘ 05
| Tarilag-(1)Son acii
i s o
& \
i i | A 0.0

/ 8 7.7 < 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

GW




System spot prices — no reinforcements

Produced by a transmission

6000

constrained stochastic SDDP run

Very high spot prices indicate

5000

reinforcement needs starting 2018
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Generation & transmission expansion plan

Study parameters
Horizon: 2016-2024 (108 stages)

123 candidate projects per year (x 9 years)
17 termal plants (natural gas, combined and open cycle)
7 hydro plants
7 renewable projects (wind farms and solar)

92 transmission lines and transformers
Computational results
Number of Benders iterations (investment module): 53

Average number of SDDP iterations (stochastic scheduling for each candidate plan in
the Benders scheme): 5

Forward step: 100 scenarios

Backward step: 30 scenarios (“branching”)

Total execution time: 2h 37m

2 servers X 16 processors

PSR




Spot prices - after optimal expansion
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Transmission reinforcements

Selection panel
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In summary...

Extensive experience with the application of stochastic
scheduling and planning models to large-scale systems
SDDP/SDP and Benders decomposition

Detailed modeling of generation, transmission, fuel storage

and distribution, plus load response

Multivariate AR models + plus Markov chains used to
represent uncertainties on inflows, renewable production, fuel

costs, equipment availability and load

Distributed processing is effective for reducing run times

With cloud computing, it is also cost-effective

~ PSR




Overview

Analytic operating cost function for multiscale dispatch




Motivation

The very fast growth of renewables has raised concerns about
operating difficulties when they are integrated to the grid

For example, “wind spill” in the Pacific Northwest, need for higher

reserve margins due to the variability, hydro/wind/solar portfolio etc.

The analysis of these issues requires

Brazilian system

an hourly (Or even flner) reSO|ut|On LP solution time x number of load blocks

100
90

In the intra-stage operation model *

= much higher execution times

0
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Standard one-stage operation problem (simplified)

Obijective: Min immediate cost + future cost

' i

Min 02 Ci9tcj TA41(Verr, A1)
Storage balance

Viv1i =Veitag; —uy; Vi=1,..,1
Power balance

2iGtrj t i€t = dir = Ynfeen VT=1,..,T
Future cost function (FCF)

k k k —
at+1 2 Zl T[vivt+1,i +Zinaiat+1,i + 6 Vk — 1, ,K

Relaxation schemes
for FCF constraints




ldea: analytical representation of immediate cost

Objective function (min immediate cost + future cost)

-  Problem size is th
Min f(e;) + at“({v”l’i}) for any nu:ﬁb;r ofGI)oSafiIme
blocks
 The same relaxation
techniques used for a;, ¢
can also be applied to B;

Immediate cost function

B >nle,+ 87 vp=1,..,P




Pre-calculation of S;(e;): single area

B:(e;) = Min ZTZ] CiGtrj

Y.z €sr = €; « coupling constraint
Zj Jtrj T €t = dir — Xin Tten

gt’cj < gj
Solution approach

If we assign a “water value” (Lagrangian) to the hydro generation, the LP is decomposed
into T = 1, ..., 7 hourly subproblems with J thermal plants + 1 dummy plant (hydro)

The subproblems can be solved by inspection (economic loading order) = they can be
decomposed into J + 1 generation adequacy subproblems, where we just compare available
capacity with (demand — renewables) (arithmetic operation)

Instead of /] + 1 generation adequacy subproblems, we only need to solve two: one with the
hydro first (cheapest), another last; the results for all the other intermediate hydro positions
are obtained by convex combinations of those two = computational effort is negligible




Pre-calculation of S;(e;): multiple areas

In the case of M areas, the supply adequacy problem becomes a max-
flow, which is solved by max flow-min cut Watch Camila’s

GPUs are suitable for Max {2 linear constraints} presentation
Speedups of two orders

— computational effort is still small :
of magnitude!

Ongoing research

Representation of storage (e.g. batteries) in the hourly problem

The analytical approximation still applies, but the max flow problem becomes larger

due to time coupling

Advanced max flow technigues used in machine learning being tested

New formulation that allows the representation of unit commitment (per block of

hours) and an (approximate) transmission network




Overview

Risk aversion modelling (CVaR and robust approaches)




Three approaches to risk aversion

Penalize supply failures

Economic cost of failure + “risk premium”

Ensure feasibility for a set of critical scenarios

Hybrid robust/stochastic optimization

CVaR on costs (Shapiro and others)

Give more weight to higher costs in the SDDP recursion

Equivalent to skewing the conditioned inflow distribution in SDDP’s

backward step




Approach #1: penalize supply failures

Start with the economic cost of . .y . .
failure ($/MWh interrupted), Challenge: reliability criterion
extracted for example from the .
country's 1/O matrix 1. Expected energy not supplied

(EENS) does not reflect risk of failure
! 2. On the other hand, risk of failure

Add a risk premium P* (also in

$/MWh) to the economic cost does not Capture Severity

\
Run SDDP with the increased
———— | penalty for supply failure and |¢&———
calculate supply reliability R

R x planning
criterion

Decrease P* [@«—Better. Worse—| INcrease P*

Equal

END




Proposed criterion: CVaR of EENS

For example, the expected energy not supplied in the 1% quantile should
not exceed 5% of load

Economic cost

slope = 6

A Plecewise cost

function

Associated to

CVaR
shift =
>
“ > r  Slope = p* =




SDDP with CVaR on supply reliability

Initialize penalty
factor P* ($/MWh)

update penalty factor P*

Define a new
candidate shift b*
for CVaR

g

Optimize b*

candidate shift b*

Derivative of operation cost
wrt b* (Benders cut)

o SDDP

L__P* b*—p

SDDP run to
compare CVaR
supply reliability

with planniing

criterion




Approach #2: Risk Aversion Surface (SAR)

[ ¥ A version of SAR was used for

several years to represent risk
/ aversion in Brazil's operation

Risk Aversion Surface (SAR)

optimality cut

B(vy,vy)
> 0

operation problem
—final storage———» for stage t+1, |q¢———-—-—

scenario /
4 feasibility
: | cut
operation problem ,
for stage t, -—— tflnal
; storage
scenario s teasibili | Deterministic optimization from t+2
eisut ity to T with worst scenario

final storage

| Deterministic optimization from t+1
to T with worst scenario




Approach #3: CVaR on operation cost

New objective function of the one-stage problem

Min AE(z) + (1 — 1)CVaR,(z)
The CVaR-cost criterion is easy to implement in SDDP,
because it is equivalent to changing the weights of the

conditioned inflow scenarios in the backward recursion

This interpretation also allows a simple and exact calculation of the

upper bound in the SDDP algorithm with CVaR, which had been a

concern for some time




Comparison of risk aversion approaches

Approach—
Attributed

Easy to understand?
Represents reliability targets directly?
Easy to calibrate?

Additional computational effort
with respect to standard SDDP

CVaR-Risk SAR CVaR-cost
Yes Yes Sort of...
Yes Yes No
Medium Yes Medium
High Medium Low

Watch Luiz Carlo’s
presentation to see the
real-life case studies!



Overview

Parameter uncertainty of stochastic models




Motivation

SDDP assumes that the PAR(p) stochastic model parameters (mean,

variance etc.) are known, i.e. they are the population values

However, those parameters are estimated from a historical record and
there is uncertainty around their values = This means that the stochastic

optimization results may be “optimistic”

The concern about parameter uncertainty has increased with the

construction of wind generation, because historical records are much

smaller




Generation of inflow scenarios with parameter uncertainty

Use the stochastic
inflow model with
"seed"#1to
generate a pseudo
historical record
(also with 30 years)

Estimate new
inflow model
parameters (# 1)
from the pseudo
historical record

Historical
records
e.g. 30 years

Estimate
stochastic inflow
model
parameters

Use the inflow
model with seed
# s to generate
pseudo historical

record # s

Estimate new
inflow model
parameters (# s)
from the pseudo
historical record

Use the inflow
model with seed
# S to generate
pseudo historical

record # S

Estimate new
inflow model
parameters (# S)
from the pseudo
historical record




Impact of parameter uncertainty on operation costs
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Joint parameter estimation and stochastic optimization
(Rockafellar)

Model parameter selection

Calculate operating policies which are “taylor made” for each set of inflow
model parameters m = 1, ..., M, and simulate system operation with

iInflow scenarios produced by all the other parameters

Use a minimax criterion (or CVaR-cost) on the M X M operating cost

matrix to select the most adequate parameter set

The selected set of parameters is “drier”

than the estimates from the historical record \Waitch
Bernardo’s

Ongoing research )
presentation!

Represent all the M alternative inflow models

as part of the SDDP recursion

Interesting similarities to CVVaR-cost in risk aversion




Overview

Generation expansion strategies




Motivation

Expansion plans cannot capture an important attribute of
different generation technologies: construction time

Hydro: 6+ years; thermal (gas): 4+ years; renewables: 1-2 years

The abillity to adjust construction of new generation to evolving
conditions is especially relevant for developing economies

High, but very uncertain, load growth

In some countries, hydro storage is an important factor for

reinforcements (e.g. recent three-year drought in Brazil)

Uncertainty on fuel costs also favors renewables

= Interest in extending SDDP to represent investment variables

~ PSR




Development of planning strategies

Markov chains are used to represent uncertainty in fuel costs and
load growth rates (hybrid SDDP/SDP model)

Handling nonconvexities due to binary investment decisions:

Hybrid plan/strategy Watch
Fernanda’s

Hydro is a binary planning decision presentation!

Long construction times make plan = strategy

Renewables are strategic continuous decisions
Tighter Lagrangian cuts in the SDDP recursion (Thomé 2013)

Recent breakthrough: The excellent paper by Zou, Ahmed and Sun

The Lagrangian cuts are tight for binary variables!

~ PSR




In summary...

Real-life applications of risk aversion in the energy area

Multiscaling and parameter uncertainty are important issues
for analysis of renewables

Planning strategies are also important for renewables

Representation of construction times in multistage stochastic

optimization

Lagrangian + binary state variables are a very interesting new

path for multistage stochastic planning




Topics not covered (lack of time)

Representation of nonconvexities using Support Vector
Regression (J.A.Dias)

Power market modeling with multistage stochastic Nash
Equilibrium (J.Garcia)

Expansion planning with risk aversion (CVaR-cost) on operation
(G.Rocha)

Extension of Markov chains to fuel cost and demand growth
uncertainties (R.Chabar)

New techniques for multi-area reliability evaluation (G.Oliveira)

Cross Entropy + Monte Carlo Markov Chain

Allows feasibility cuts for planning models

~ PSR




THANK YOU
OBRIGADO
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