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Abstract In this paper, we present a state-of-the-art energy planning framework, that is being used
by the Peruvian Ministry of Energy and Mines to formulate official studies. It is composed of six
different models, which cover demand forecasting and supply optimization of primary and secondary
energy resources, such as electricity, oil, gas, coal and biomass. It also includes a module for evaluating
the impacts of the energy system development on the Peruvian economy and its feedback on energy
demand. We focus on how these models are coherently integrated to provide a flexible, consistent and
practical system. Results show a high penetration of renewable power generation technologies in 2040
and the need for investments in natural gas processing and transportation facilities. The modernization
of existing refineries is also important to reduce the need of diesel imports and adapt the sulfur content
to new national legislation.

Keywords Energy Planning · Energy Modelling · Peru · SDDP · OPTGEN · OPTNET · TIMES ·
Computable General Equilibrium · Demand Forecast · Soft-Linking

1 Introduction

As the energy sector worldwide shifts towards renewable and innovative technologies, the need for
computer algorithms capable of adapting to a complex and constantly changing reality arises. Sector
coupling is becoming a buzzword in the field, as the links between the power sector, the fuel supply
chain and demand side management intensify [1]. Energy models must evolve accordingly, treating
energy industries (that is, production and transportation of oil, gas, electricity and other primary
and secondary resources), demand segments (such as mobility, industrial processes and heat), the
environment and the economy as integrated systems. Despite the need for this holistic view, the level
of detail should not be compromised, since smaller time steps, higher geographical resolutions and
longer horizons are critical to proper planning of modern energy systems [2].

Integrated frameworks for energy planning have been extensively discussed in the literature on
energy-economy interactions [3]. The first Energy Modelling Forum (EMF) [4], in 1977, identified that
understanding short- and long-run relationships between both fields was crucial for researchers and
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modelling teams, since the services provided by the energy sector are transversal to the economy1. From
then on, two main approaches have been used to address integrated modeling of energy and economic
systems: the hard-link approach, in which a single model covers all the aspects being studied; and the
soft-link approach, in which different specialized models and tools are used, each one aiming to solve
a specific problem, and are coherently integrated [7].

Hard-links require simplifications in order to be computationally tractable, given the great number
of variables and equations. Although rich technological representation can be described in macroe-
conomic models, most approaches rely on a top-down view of the energy sector, focusing on market
and economy-wide feedbacks and interactions. Typically, these models have exogenous variables for
the energy sector, such as energy prices or production function parameters, facing some limitations to
interpret investment needs and technological deployment for energy planning purposes [6,8].

In contrast, soft-links allow a more detailed representation of the reality, particularly regarding
technological representation at sectoral and regional levels. Because each model has a specific scope,
soft-links require strong attention of the modeller on identifying what information to link and how to
link it across the models in order to achieve coherent results [7]. The interaction between energy and
the economy is often represented through partial exchange of information in an iterative process, that
stops once convergence criteria for common parameters are reached across models. Soft-links are vastly
applied in the literature when integrating economic models with energy models [7,9,10].

A natural step is to extend the concept of soft-linking to the integration of more general models,
instead on focusing only in energy-economy interactions. In this paper, we present a soft-link energy
planning framework composed of: a demand forecast model, explained in section 2.1; a model made
using IEA’s TIMES system [11], for least-cost optimization of supply and demand of petroleum, nat-
ural gas and other energy commodities (section 2.2); OPTGEN [12], SDDP [13] and OPTNET [14]
models developed by PSR to optimize power sector’s generation expansion, operation, and transmis-
sion expansion, respectively, discussed in section 2.3; and a Computable General Equilibrium (CGE)
model for the economy (section 2.4). Our goal in this paper is to provide, in a transparent way, an
overview of the soft-linking procedure used to build an energy planning framework, at national scale.

By using this soft-link approach, we were able to unify specialized software and methodologies that
are widely used in research and commercial applications into a single framework, while preserving
the complexity and flexibility of each model. When applying this framework to the Peruvian energy
system, detailed power sector models allowed us to represent the 118 Peruvian power plants, 187
transmission lines, and over 200 network nodes, as well as individual projects for generation and
transmission expansion. The problem formulation of TIMES included more than 50 thousand variables
and 400 thousand constraints. Moreover, the demand forecast model provided 127 demand series that
can be further broken down (sectorally or regionally) according to information availability and user
requirements.

This energy planning framework was developed as part of a project for the Peruvian Ministry of
Energy and Mines (MEM), funded by the Inter-American Development Bank (IDB). The project was
carried out by the consortium formed by PSR and Mercados Energéticos, with strong collaboration
from MEM team. Brazilian academic institutions COPPE/UFRJ and IBRE/FGV assisted in the design
of the Peruvian TIMES model and the CGE model, respectively. The project also included the design
and deployment of a national web-based energy information system available to relevant actors of the
energy sector, to be managed by MEM. These tools were used in the elaboration of the 2040 National
Energy Plan to address critical questions, such as the energy infrastructure evolution over the next
years to ensure an economic and secure supply of oil, gas and electricity, investment requirements, and
as a framework to evaluate the impact of different energy policies.

Specific questions were also investigated, such as: are policies targeting an increase of renewable
energy needed or will they happen anyway for economic reasons? And if they are implemented to
anticipate the penetration of renewable energy that would happen anyway given the cost decrease of
the technologies, what will be the corresponding cost? How much oil needs to be imported for supplying

1 Hogan and Manne [5] have metaphorically compared the interaction between energy and economy with the taste of
a stew containing one elephant and one rabbit – it would still taste like an elephant stew – since the energy sector has
a relatively small weight in most economies’ GDP, a fable that is still part of the literature of model integration [6].
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local refineries, considering the domestic production? How will CO2 emissions evolve in the next years?
The main assumptions and results used are presented and discussed in section 3. Section 4 concludes
with additional sensitivities that were done for the National Energy Plan.

2 Methodology: a soft-linked energy planning framework

This section presents each constituent model / tool of the energy planning framework. We emphasize
that each model may be run on a standalone basis. Even so, this section describes how the models
were integrated to ensure consistency between their reults. Figure 1 shows the framework.

Fig. 1 Energy planning framework developed for the Peruvian Ministry of Energy and Mines (MEM).

Initially, econometric techniques are used to forecast demand for energy services - an input to
supply side models. OPTGEN determines the optimal electric generation expansion, OPTNET then
determines the necessary transmission network expansion to accommodate the new power plants and
SDDP determines the least cost operation of the power system of a given supply x demand configura-
tion. Then, the TIMES model optimizes the expansion and operation of the remaining energy sectors,
aiming to satisfy the energy service demands in industrial, transportation, residential and commercial
sectors, besides fuel consumption of thermal power plants (their dispatch decisions, already made by
SDDP, are translated into fuel consumption in processes in TIMES). Finally, a CGE model of the
Peruvian economy is used to update the energy demands inputted in TIMES, in an iterative process
that models the impacts of the energy sector to the economy and vice versa.

2.1 Demand Forecast Model

Uncertainty about the future makes demand forecasting a key element in the development of
energy planning strategies. In this context, energy demand projections should assist decision-making
to ensure that the system expands and operates efficiently, according to market quality and reliability
requirements.

The demand model developed for projection and analysis of Peru’s energy consumption is divided
into three main classes, with the objective of capturing key aspects of each consumer sector: buildings
(residential, public, commercial and services sectors), productive activities (agriculture, mining, fishery
and manufacturing) and transportation (aerial, naval, rail and road). Econometric models were used
for the projection of energy consumption of the first two classes, in addition to a bottom-up approach
for the transport sector.
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Fig. 2 Econometric and bottom-up models for demand projection.

2.1.1 Buildings and Productive Sectors

In econometric models, a mathematical model relating explanatory to dependent variables is built
and parameters are estimated from historical data. The estimated model summarizes the dynamic
patterns of the data, giving a statistical characterization of the links between the present and the
past. In our demand forecast model, econometric techniques are used to forecast the long term energy
demand by sector (residential, commercial, public, manufacturing, fishery, agricultural and mining),
region (North, Center, South and East, as detailed in section 2.2) and type (fuel or energy service).

More precisely, for residential, commercial and public sectors, consumption is projected by fuel
(coal, diesel, electricity, natural gas, gasoline, liquefied petroleum gas (LPG), firewood and jet fuel).
For agriculture, manufacturing, mining and fishery, demand is projected for each energy service (driving
force and process heat), in addition to the demand for electricity that is evaluated separately, for each
sub sector.

Forecasting the demand of energy services, instead of directly forecasting fuel consumption, as we
do for productive sectors, enables TIMES model to decide the optimum mix of fuels to meet that
specific demand, as explained in section 2.2. Although this criterion has an economic logic, it has some
limitations in the case of residential and commercial sectors: very high cost of the equipment that
makes the replacement unfeasible due to the low financial capacity of the household or merchant, lack
of information, personal customs, etc. Consequently, in this work, the energy efficiency analysis in the
residential and commercial sector was not carried out on the basis of an economic decision-making
model. Instead, demand forecasts by fuel were used, allowing the simulation of energy efficiency and
fuel substitution policies based on realistic expectations for these sectors.

The demand model assumes a causal forecasting approach, which establishes a historical rela-
tionship between the dependent variable (energy demand) and relevant independent variables. The
explanatory variables are chosen for each sector from a pre-specified set of candidates, based on their
predictive power and statistical significance. In this study, this set included national GDP, sectoral
GDP and population. A model was developed to decide for the variables as well as the structure of the
econometric model to be adopted, that is, if it uses a linear regression model, a vector autoregressive
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model (VAR) [15] or a vector error correction model (VEC) [16,17], according to several hypothesis
tests and statistical significance.

Tests were performed to detect nonstationarity (Augmented Dickey Fuller test), heteroscedasticity
effects (ARCH test), cointegration between variables (Johansen test), collinearity (correlation matrix
analysis) and residual independence (Ljung-Box/Portmanteu test) [18,19]. Once nonstationarity, het-
eroscedasticity and correlated variables are discarded, the indication of cointegration leads to the use
of a VEC model, as well as non cointegration indicates that linear regression or VAR models should
be employed. The Akaike criterion (AIC) [19] is used to choose between formulations, since it points
out to the model with lower variance, penalizing by the number of explanatory variables. Finally, the
residual analysis of the chosen model needs to ensure that the error components behave like white
noise, in order to avoid spurious regressions and ensure coherent projections.

2.1.2 Transport Sector

A bottom-up model is used to capture the complexity of the transport system. At first, primary
parameters are estimated through a regressive model for aerial, naval, road and rail transportation.
Table 1 specifies, for each transport subcategory, the primary parameters and the final demand variable
projected, that is used as an input for TIMES.

Category Subcategory Primary Variable
Final Demand Model Output

Variable

Naval cargo
Transported

cargo
Energy

consumption (PJ)

Aerial all
Number

of airplanes
Energy

consumption (PJ)
public passengers

transportation
Vehicle sales

Passenger-kilometer
(pkm)

private passengers
transportation

Vehicle sales
Passenger-kilometer

(pkm)
Road

cargo Vehicle sales
Tonne-kilometer

(tkm)

passengers
Number of passengers

transported by railway company
Passenger-kilometer

(pkm)
Rail

cargo
Metric tons transported

by railway company
Tonne-kilometer

(tkm)

Table 1 Projected variables by transport category.

Once the primary projections have been obtained, the final energy consumption for categories air
and naval is calculated assuming it follows the same growth rate of its primary variable. On the other
hand, the primary variables for categories road and rail are converted to passenger-kilometer (pkm)
or tonne-kilometer (tkm), for passengers and cargo transportation respectively, using historical factors
taken from the Peruvian useful energy balance [20]. Similar to the productive sectors, this forecasting
methodology allows TIMES to decide the optimal mix of fuels to meet the demand for each transport
type, based on an economic analysis. It is worth mentioning that consumption forecasts for road
transportation subcategories are made for each mode (cars, motorcycles, buses, vans, trucks, etc.).

2.2 PERU-TIMES

The TIMES model (The Integrated MARKAL-EFOM System) was developed as part of the IEA-
ETSAP Energy Technology Systems Analysis Program [11]. The model has been extensively used
in the literature for describing bottom-up representations of the energy systems at country [21,22,
23], regional [24,25,26], and global levels [27,28,29]. The integration with CGE models has also been
explored in the literature [30,31], ensuring economic consistency of the results of energy sector partial
equilibrium models.
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In TIMES, each technology is represented by a process, which is a “black box” with inputs and
outputs, called commodities. The relationship between inputs and outputs is expressed by linear
(in)equations. The energy system is built as a chain of processes. Each process produces commodities
that will be consumed by other processes or, in the end, by a demand. For example, the gas chain
includes its extraction, processing, transport, local distribution and final consumption.

Each of the processes has its own technical parameters, which were calibrated according to Pe-
ruvian energy balances and other available information. The entire technological structure of energy
supply and demand is represented and complemented by a series of technical (capacities, efficiencies,
etc.) and non-technical constraints (political decisions to cap greenhouse gas emissions or to promote
electrification of transportation, for example). Taking the topology and system constraints as data,
the model optimizes the energy system configuration to satisfy the energy demands provided by the
econometric demand model, seeking for the lowest total cost solution (sum of operating and investment
costs in the system), discounted at present value, during the analyzed time horizon.

The model allows for virtually any topology and any linear constraint, eventually including binary
variables regarding process investment decisions. This makes it very flexible and adaptable to new
regulations and technology innovations. The main results of the TIMES model are the following:

– Optimal capacity expansion for each technology;
– Investment costs required in the deployment of energy infrastructure;
– Energy flows (in and out) for each process;
– Optimal operation cost of the energy system;
– Imports and exports of each commodity; and
– Emissions of greenhouse gases (GHG).

The following subsections focus on the modeling adopted in this study for the main sectors of the
Peruvian energy system (PERU-TIMES model). Four Peruvian regions are explicitly represented in
the model (Center, South, North and East2). Transfers of given commodities between regions are also
represented by trade processes in PERU-TIMES.

2.2.1 Oil Upstream and Downstream

In the upstream, three types of crude oil are considered in modelling, according to API gravity:
light, medium and heavy. For each kind of oil, five extraction processes were built, each corresponding
to a reserve level based on the SPE classification (proved developed, proved undeveloped, probable,
possible and contingent resources)[32].

Uncertainties on how oil and gas reserves evolve over time add complexity to the modelling. Multiple
factors can influence the classification of reserves: prices, regulation, socio-environmental constraints,
investment decisions, etc. The model does not represent such dynamics – i.e., through exploration of
undiscovered resources or a growth mechanism based on contingent resources. The EUR (Estimated
Ultimate Recovery)3 is static and the base year classification of reserves is assumed to remain constant
over time. In the solution space, the model opts first to use the cheaper reserves (proved developed
reserves), before reaching other levels (proved undeveloped reserves, probable reserves, and so on) [34].

In the downstream, light, medium and heavy oil are either exported or blended in the proportions
allowed by refineries technology. Each of the six Peruvian refineries (Pampilla, Talara, Conchán, Iquitos,
Pucallpa and El Milagro) is modelled as an individual process that uses crude oil in order to produce
diesel, gasoline, fuel oil, jet fuel and LPG. Each oil product has a share in the total refinery output, that
can be optimized by the model, within a specified range. As most diesel produced by local refineries
does not meet sulfur content standards imposed by regulations in some departments, the model treats
low sulfur and high sulfur diesel as different commodities.

2 List of Peruvian departments in each region: (i) Center: Lima - Callao, Junn, Pasco and Huánuco; (ii) South: Ica,
Arequipa, Moquegua, Tacna, Huancavelica, Apurmac, Ayacucho, Cuzco, Puno and Madre de Dios; (iii) North: Tumbes,
Piura, Lambayeque, La Libertad, Ancash, Cajamarca and Amazonas; (iv) East: Loreto, Ucayali and San Mart́ın.

3 EUR is an estimate of the expected ultimate recovery of oil or gas from a producing well [33].
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Fig. 3 Crude oil upstream and downstrem representation in PERU-TIMES. Processes for blending diesel and gasoline
with biofuels are not shown.

Oil products may also be imported or exported (domestically, between regions, or internationally).
Moreover, processes representing diesel and gasoline blending with biofuels (biodiesel and ethanol,
respectively) are considered in PERU-TIMES, as they are obligatory according to existing regulation.
At last, other processes represent the distribution of these fuels to final consumers.

2.2.2 Natural Gas Upstream and Downstream

Upstream natural gas is also modelled using the SPE reserve classification (proved developed,
proved undeveloped, probable, possible and contingent resources), as in the case of oil. For associated
gas reserves, mainly located in the North region, gas production is proportional to oil extraction,
according to a factor estimated from historical production.

In downstream, wet gas extracted from wells is separated in processing plants into its gaseous
component (dry gas) and natural gas liquids (NGL). The Peruvian gas processing plants are Malvinas,
Curimaná, Pariñas and the plant operated by Graña y Montero Petrolera S.A. In PERU-TIMES, each
of these plants is represented as an individual process, with given capacity and production cost.

Fig. 4 Natural gas upstream and downstrem representation in PERU-TIMES. NGL transport from Camisea to Pisco
fractionation plant is also a separate process in PERU-TIMES (not shown here).

Dry gas flows through gas pipelines to be delivered to final consumers. However, a share of the
production is flared, vented or reinjected. The main Peruvian pipeline is TGP, which carries gas from
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Camisea gas fields in the Amazon Basin to the departments of Lima and Ica, in the Coast. One of the
ramifications of TGP goes to Pampa Melchorita liquefaction plant, which produces liquified natural gas
(LNG). Most of the LNG produced in Pampa Melchorita is exported, but a small part is transported
by trucks for distribution to final consumers in the North and South regions. Natural gas distribution
processes to end-use technologies are also represented in the PERU-TIMES model, such as the ones
for oil products (Figure 4).

Natural gas liquids (NGL) share in total production is given exogenously to consider its expected
decrease over time. NGL sells are a key component of the cash flow generated by gas wells in Peru. NGL
are then transported to fractionation plants for production of final products, such as LPG, gasoline and
diesel. There are three fractionation plants in Peru: Pisco, Yarinacocha and one operated by Graña
y Montero Petrolera S.A. Usually, gasoline and diesel produced in Pisco fractionation plant do not
satisfy local consumer specifications and so they are mostly exported abroad.

2.2.3 Other Commodities: Coal, Biomass and Biofuels

Coal is represented by three processes: imports, exports and domestic production. For domestic
production, only proven reserves were considered, and extraction and investment costs were estimated.
Most of ethanol and biodiesel used for blending with fossil fuels are imported, but domestic production
processes were also modeled. A process representing uranium mining was created, but nuclear power
plants do not exist in Peru and were not represented in the model. Production of firewood, charcoal
(having wood as an input) and sugarcane for power generation and for domestic ethanol production
are also represented by individual processes in PERU-TIMES.

2.2.4 End-use Technologies

In general, end-use technologies are represented by processes that convert an energy commodity
(oil products, natural gas, coal, etc.) into an energy service (useful energy), such as heating, lighting,
or cooling. The demands for energy services are inputs to PERU-TIMES, and are calculated by the
econometric demand model (section 2.1) for buildings, productive sectors and transportation. The
approach for buildings is straightforward, since the econometric demand model already calculates
demand for energy services for each fuel, in petajoules (PJ), and TIMES does not have to decide which
fuel to use to satisfy demand (Figure 2).

For productive sectors (manufacture, mining, agriculture and fishery), demands for energy services
(heating and driving force) are inputted to the model. Different end-use technologies (processes) may
be used for satisfying the same energy service demand, each one corresponding to a specific fuel and
with certain efficiency and costs parameters. According to these parameters and subject to other
constraints, PERU-TIMES chooses how much of each fuel should be used in order to minimize the
objective function. Electricity consumption (either for heating, driving force or other uses) for each
industry sector is treated independently by the demand econometric model, since this is also used for
power system planning (section 2.3).

PERU-TIMES may also choose the mix of fuels in order to satisfy transport demands (Figure 2),
such as in industry sector. However, these demands are given by the performance of freight transporta-
tion in tonne-kilometer (tkm) or the performance of passenger transportation in passenger-km (pkm),
which, in turn, is divided into public and private transport. For this reason, each end-use process has,
besides an efficiency parameter (in PJ/km), an average occupation factor (in passenger or tonne per
vehicle), which allows for the conversion between fuel consumption and demands (in pkm or tkm). The
average vehicle use (average annual mileage) is an additional parameter that allows for estimating the
number of vehicles using each fuel. This kind of modelling is used for road and railway transport, but
for navigation and air transport, final energy demands (in PJ) are inputted directly into the model.

All these end-use processes, as well as power generation processes (see section 2.3), have a factor
that relates fuel consumption to GHG emissions. This factor is expressed in tonnes of GHG emitted by
PJ of fuel burned, so PERU-TIMES automatically does the emissions accounting. Three greenhouse
gases were considered: CO2, CH4 and N2O.
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2.3 Power Sector Models

In PERU-TIMES, there is one process for each of the eleven power generation technology considered:
solar, wind, biofuels, geothermal, hydro, coal, diesel, fuel oil, open cycle natural gas and closed cycle
natural gas. The model can be run in stand-alone mode, deciding how much electricity each technology
will generate and how to expand the power sector. The main drivers the model will consider for
these decisions are investment and operating costs. However, as fuel costs for hydro and renewable
are virtually zero – power plants do not have to pay for water, sun or wind used for generation –
PERU-TIMES will usually favor these technologies. In addition, PERU-TIMES does not consider
hydrology and hydrology uncertainty (that is, the possibility to save water in wet periods to reduce
electricity prices in dry ones), renewable annual and intraday seasonality and power grid constraints –
although renewable technologies are cheaper, they usually require big investments in new transmission
infrastructure, which can make specific projects unfeasible.

For this reason, tools specifically designed for power sector modelling were used, to improve repre-
sentation of Peruvian power plants and electric grid. Three models were used: OPTGEN, for optimal
electric generation expansion, OPTNET, for optimal transmission network expansion and SDDP, for
power system operation optimization. These models are developed by PSR and applied in about 70
countries, from all continents4, including Peru, where it is used by the System Economic Operation
Committee (COES), market participants and the energy sector regulator (OSINERGMIN).

A software was made for transforming power sector models outputs into additional constraints
for PERU-TIMES, so that power sector expansion and operation in TIMES is exogenously given by
SDDP, OPTGEN and OPTNET decisions. As power sector models consider individual power plants,
this software basically aggregates generation and capacity of all power plants belonging to each of the
eleven mentioned processes, and write a file of generation constraints for use by TIMES. Operation
and investment average costs are also transferred from power sector models to PERU-TIMES, assuring
coherence between TIMES objective function and power sector models costs.

2.3.1 OPTGEN

Based on a list of candidate power plants, the model’s objective is to elect those that satisfy the
electric demand (estimated by the econometric demand model) and minimize the sum of operational
and investment costs, taking into account inflow uncertainties [12,35,36]. For this, OPTGEN has an
operating module that represents the main aspects of the system.

In addition to supplying consumer demand in future years (energy consumption and peak demand),
OPTGEN offers additional options, such as the definition of a power reserve margin coverage restriction
(so that total firm capacity in each year exceeds the peak demand of the same year by a certain
margin) and renewable plants generation targets (e.g. 15% of overall demand must be satisfied by
non-conventional renewable plants by 2030). For recent applications, see [37,38,39].

2.3.2 SDDP

SDDP is a probalistic dispatch model with representation of the transmission network, that may
be used in short-, medium- and long-term operational studies [13]. The model calculates the minimum
cost operational policy of a power system taking into account the operational details of hydro plants
(water balance, limits on storage and turbined outflow, spillage, filtration, etc.), thermal plants (gas
consumption restrictions, bi-fuel thermal plants, unit commitment, take-or-pay fuel contracts, etc.)
and renewable plants (solar and wind seasonality, operation factors, etc.). SDDP also incorporates
decision-making under hydrological uncertainty, by means of stochastic generated hydrological scenar-
ios and multi-stage stochastic optimization techniques [40,41,42,43,44]. In addition to the minimal
cost operating policy, the model also calculates different economic indices such as the marginal cost of
operation (per submarket and per bar) and others.

4 For more information go to https://www.psr-inc.com/
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In the methodology used in this study and presented in Figure 1, SDDP is run twice. In the first
execution, in preparation for the grid expansion planning (see section 2.3.3), SDDP receives as inputs
the electricity demand and the generation expansion plan made by OPTGEN. Maximum limits for
transmission lines and transformers of the electric grid are not considered in this run. Those circuits
and transformers with flows above the maximum existing capacity automatically become candidates for
transmission reinforcement. Therefore, before executing a study to plan the expansion of transmission
capacities, a preliminary stage of preparing candidate circuits is performed, which includes the use of
technical parameters and investment costs consistent with Peruvian market.

Once the expansion of the transmission network has been carried out, SDDP is used for the second
time in order to verify the quality of the final operation considering the elected network additions,
with circuit flows being monitored so that they do not reach the maximum capacity. This final run
produces as results scenarios of power generation, marginal costs of electricity, operating costs, circuit
flows, fuel consumption in the thermal power plants, GHG emissions, and others.

2.3.3 OPTNET

OptNet is a computational tool that determines the least-cost expansion for the transmission net-
work to ensure supply of the expected demand throughout the study horizon, with detailed modeling
of Kirchhoffs laws [14].The model chooses the best reinforcements among a list of transmission lines
and transformers to minimize the sum of investment costs and network reliability worth, measured by
interruption costs due to contingencies. Interruption costs are evaluated taking into account all sce-
narios coming from SDDP, instead of only one dispatch scenario. That is, each hydrological scenario
considered by SDDP gives rise to a dispatch solution, which serve as inputs to OptNet. In this study,
44 hydrological scenarios were considered, and so, in each year, investments were made to minimize
expected costs over 2640 power flows (12 months times 5 load blocks times 44 scenarios). In this way,
a more robust expansion plan and a better trade-off between investment costs and the supply relia-
bility are obtained [45]. Moreover, a disjunctive formulation of the transmission expansion problem is
adopted, avoiding non-linear power flow equations [46].

The candidate transmission lines and transformers list is prepared by the user. As mentioned
above, in this study the candidates considered were circuits parallel to the ones that had their flow
limits surpassed during the first SDDP execution. Some of the lines considered in the official Peruvian
Transmission Plan [47] were also considered as candidates (see section 3).

2.4 Computable General Equilibrium Model

Demands provided by the econometric model are based on exogenous GDP forecasts. However,
energy prices have an effect on economic growth and national income. The energy sector evolution
may significantly impact GDP and therefore the energy sector’s own demand. We developed a model
of the Peruvian economy in which macroeconomic variables are determined by the condition of general
equilibrium: assuming that each economic agent maximizes its welfare (the utility function, in the case
of consumers, and profits, in the case of firms), demand and supply for each product are equalized.
The model consider 12 kind of firms in the economy, each one responsible for producing one aggregate
good. Four of them are responsible for the production of energy products: solid, liquid and gas fuels,
plus electricity. Model parameters were calibrated using the Peruvian Social Account Matrix (SAM)
of 2007 [48]. Since this SAM has 54 sectors, some aggregation operations were needed to transform it
into a 12-sector SAM that could be used to estimate CGE’s production and utility functions.

TIMES-CGE integration aims to assure that prices and quantities provided in TIMES solution are
consistent with general equilibrium conditions for the overall economy. Different methods were proposed
in the literature for integrating CGE and energy supply models [7,49,50]. In this project, after solving
TIMES according to demands defined by the econometric demand model, prices and quantities of
different commodities are aggregated into the four energy sectors considered in CGE (solids, liquids,
gas and electricity). Then, an optimization problem is solved, changing specific parameters in the
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production functions of the four CGE energy sectors so that the distance between CGE and TIMES
solutions (regarding prices and quantities of the four energy aggregates) is minimized.

The solution to this problem provides new GDP and sectoral GDP projections, besides new demands
for energy aggregates, which must be disaggregated into the various energy service demands in order to
feedback the TIMES model. For example, one of the outputs of CGE is the aggregate demand for liquid
fuels. However, TIMES considers diesel, gasoline, jet fuel, fuel oil and other liquid fuels individually.
To disaggregate liquid, solid, gas and electricity demands coming from the CGE, the econometric
demand model is executed again, using the new GDP and sectoral GDP as explanatory variables in
the regressions. This provides a new set of disaggegated enery service demands5 that are used to run
TIMES once more. The interactive process continues until convergence between the CGE solution and
TIMES solution is reached, within a specified tolerance for the difference between CGE and TIMES
prices and quantities of the four energy aggregates6.

2.5 Models and Tools Integration

The models and tools of the energy planning framework have different basic structures. The models
process information in different levels of aggregation and have different scopes, spatial and temporal
resolutions. Table 2 presents the core differences among the models. As an example, the sectoral
(dis)aggregation in the CGE model comprises energy and non-energy sectors that are not the same
as those represented in the PERU-TIMES model. The same applies for the representation of the
supply technologies: while the CGE model has generic production functions, PERU-TIMES relies on
“processes”, that can be used to represent technologies with any level of detail desired (for instance,
refineries are represented individually, while individual power plants are aggregated by technology).

The differences among the models pose a difficulty for the modeler during the soft-linking procedure.
[7] presents a script for successful integration between models. The first step is to identify connection
points (what to link), by carefully analyzing the models’ basic differences and similarities (overlaps and
common exogenous variables). The soft-linking procedure also requires a second major step: identifying
how to connect the common points in order to create an information flow among the models (how to
link). Naturally, a third and final step in this procedure is to check the consistency and the robustness
of the outputs produced.

Table 3 describes a summary of the soft-linking procedure adopted for the energy planning frame-
work. In the first column, the arrows indicate the direction of the information flow (a double arrow ↔
indicates information flow both ways). The overlaps and the common exogenous variables of the set of
models were identified. Then, the connection points were defined and the information flow was set up
to start producing the outcomes of the energy planning framework.

3 Peruvian National Energy Plan: an application of the soft-linking procedure

The energy planning framework described in section 2 was used for the preparation of a first draft
of the 2040 National Energy Plan. The assumptions used in the study resulted from a long interaction
bvetween the consortium and MEM staff. This collaboration allowed knowledge to be transferred to
the MEM’s team, which was essential since they are expected to operate and maintain the system in
the future. During development, various players in the energy sector were heard, either by presential
or remote meetings, in order to gather information and reach some degree of consensus on the major
concerns regarding the evolution of the sector.

5 After solving the demand forecast model for the second time, with explanatory variables updated, results do not
necessarily coincide with the demands of the four energy aggregates resulting from CGE, since methodologies differ. To
ensure consistency between all models, another optimization model is employed to find new demands which differ as
little as possible of the demand model’s forecasts and at the same time are close enough to CGE quantities.

6 For the study presented in section 3.3, a 10% tolerance was used.
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Model Scope Spatial Resolution
Temporal
Resolution

Demand
(Dis)aggregation by

Sector

Supply
Technologies

(Dis)aggregation

Demand
Forecast
Model

Econometric
approach to

determine demand
for energy sectors

Regressions at
national level, with

further
disaggregation of

forecasts by region

Year Residential,
commercial,

industrial and
transport sectors

(the latter
subdivided into

modes and purpose -
public or private

passenger or cargo)

No
representation of

supply
technologies

PERU-
TIMES

Detailed
representation of
the energy supply

chain, with
exogenous

demands (partial
equilibrium model)

Regional level
(four regions)

Year (perfect
foresight)

Technologies
represented by

“processes”, with
different levels of

aggregation

CGE

Representation of
the whole economy

and interactions
between economic

sectors

National level
Year (static

model)

4 energy sectors
(electricity, gas,
liquids and solid

fuels) plus 8
non-energy sectors

Generic
production

functions for 4
energy sectors

plus 8
non-energy

sectors
PSR Tools (OPTGEN/SDDP/OPTNET)

OPTGEN

Optimization of
the electricity

generation
expansion

Electric grid nodes
Hours or load

blocks

Exogenous demands
(no need to
differentiate

demands of different
sectors)

Power plants,
transformers and

transmission
lines represented

individuallyOPTNET

Optimization of
electricity

transmission
expansion

SDDP
Optimization of
the power sector

operation

Table 2 Basic / core differences between models

3.1 Demand scenarios

Three demand scenarios were built, according to different assumptions for national and sectoral
GDP growth rates (which are later updated by the TIMES-CGE integration). Projections of socioe-
conomic variables made by APOYO consultancy [51] were used from 2018 to 2026. In the absence of
projections for sectoral GDP growth for the remaining period, scenarios provided by the Ministry of
Energy and Mines (MEM) were used for 2027-2040. Figure 5 shows different scenarios of aggregated
national energy consumption, in petajoules (PJ).

Fig. 5 National demand forecast scenarios, in PJ.
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Models
(from → to)

Overlaps
Common
exogenous
variables

Connection
points (what

to link)

Information flow (how to
link)

Demand
Forecast
Model →
PERU-
TIMES

Both models may be used
to forecast fuel demands
(PERU-TIMES may do

this when different
options to meet a given

energy service exist)

End-use technology
parameters (e.g.

efficiencies)

Energy
demands

The demand forecast model
provides demands already
in the format required by

PERU-TIMES

Demand
Forecast
Model →

PSR Tools

- -
Electricity
demand

Electricity demand
projected by the demand

forecast model is
disaggregated by load block

and grid node

PSR Tools →
Peru-TIMES

Both models may be used
to optimize electricity
generation mix and

investment decisions, but
PSR tools are more

detailed

Electricity demand
Electricity

generation and
capacity mix

Constraints on generation
and investment decisions in
PERU-TIMES, according to
the decisions of PSR tools

PERU-
TIMES ↔

CGE

Both models simulate fuel
prices and production

Historical data of
energy flows (used
to calibrate both

models)

Energy
production
(and thus

demand) and
prices

For each year, energy
sector’s productivities in

CGE are changed for giving
the closest solution to

TIMES
CGE →
Demand
Forecast
Model

Both models simulate
energy demands

Population growth
GDP and

sectoral GDP

GDP and sectoral GDP
endogenously determined

by CGE are inputted to the
demand forecast model

PSR Tools (OPTGEN/SDDP/OPTNET)

OPTGEN →
SDDP

Both models have
operational decisions, but
SDDP is a more detailed

model and designed
specifically for operation

planning

Electricity demand
and parameters for

power plants,
transmission lines
and transformers

Generation
expansion plan

SDDP defines the optimal
dispatch, considering

OPTGEN’s expansion plan

SDDP ↔
OPTNET

Both models run power
flow analysis, but SDDP

does not consider
candidate circuits and

OPTNET does not
optimize dispatch

Electricity demand
and parameters for

power plants,
transmission lines
and transformers

Dispatch
scenarios and

circuits
candidates

OPTNET decides the best
circuits to invest to ensure
reliability in all dispatch
scenarios from a previous

execution of SDDP. SDDP
is run once more

considering OPTNET’s
expansion plan

Table 3 Connection points and information flow among the models.

Once the forecasts of aggregate total energy consumption by sector have been defined, detailed
projections by region and fuel (or use) are achieved through a matrix of percentage participation factors.
Regardless of the sector, the distribution of consumption by region is defined based on the regional
consumption distribution of the Useful Energy Balance 2013 [20]. Nevertheless, the assumptions used
for the partition between fuels and uses depend on the sector. According to the methodology exposed in
2.1, for the industrial and transport sectors, in which energy services demands are projected (electricity,
process heat, driving force, passenger-kilometer etc.), the share of each use comes from the Useful
Energy Balance 2013 [20], whereas TIMES will be responsible for deciding the optimal fuel mix. On
the other hand, for residential, commercial and public sectors, in which the projection by energy
commodity (firewood, electricity, LPG, etc.) is made by the demand model, exogenous policies, such
as energy efficiency and fuel substitution were created.

In the residential sector, for instance, the exogenous policy included substitution of coal and fire-
wood by gas and/or LPG, according to the availability of natural gas to residential consumers in each
region. In the base growth scenario, the share of gas in the total consumption of the sector increases
from 1% in 2013 to 10% in 2040. Consistently, the shares of firewood and coal decrease in the same



14 Marcelo M. Resende et al.

proportion. For the commercial sector, the replacement of LPG by natural gas for the Central, North-
ern and Southern regions is considered. In this case, natural gas growth is more moderate: from 1% to
3% at the end of the horizon. In both sectors, for each region, shares were adjusted according to gas
distribution companies’ forecasts. Different matrices of participation were created for the high and low
growth scenarios for the simulation of a greater or less aggressive firewood substitution.

3.2 Data and main assumptions

The power sector database was adapted from the one used in the study for reserve margin verifi-
cation prepared by COES [52]. All technical parameters for existing and planned transmission lines,
transformers and power plants connected to the National Electric Interconnected System (SEIN) are
part of this original database. For power generation expansion planning up to 2040, a diversified set
of candidate plants was added to that base, including hydroelectric, natural gas, diesel, solar, wind,
geothermal and biomass plants7. Renewable technologies investment costs were assumed to reduce in
the future according to [54]. An additional supply reliability constraint was included in OPTGEN,
by which firm capacity in each year should exceed peak demand by the margin established in COES’
reserve margin verification study [52]. Although the evaluation period of that study ends in 2022, we
assumed that this minimum reserve criterion is maintained throughout the horizon.

As OPTNET candidates, circuits and transformers parallel to existing ones were considered, with
the same capacity, reactance and resistance. Transmission lines already considered in the official trans-
mission plan of the country [47] up to 2026 were maintained in the database, while lines to be built
after this year were added as additional candidates. Investment costs were estimated based on refer-
ence values contained in that plan and discussed with MEM staff, following market references. The
construction of a 1000 MW transmission line connecting Peru to Ecuador, expected to start opera-
tion by mid 2023, was also considered. The Ecuadorian power system was not modeled, as only its
transactions with Peru were of interest. For this matter, a dummy power plant, that produces only
when Peruvian marginal cost is greater than Ecuador’s one, and a flexible demand, that consumes only
when Peruvian marginal cost is lower than in Ecuador, were used to represent exports to and imports
from Peru, respectively. Marginal costs for Ecuador were estimated assuming a strong hydroelectric
expansion in that country.

Economical and technical parameters for PERU-TIMES processes (presented in section 2.2) were
taken from many sources, ranging from information sent directly by MEM’s staff, to public information
from the web [55,56,57]. For example, oil and gas reserves data were taken from [58], while existing
capacities and efficiencies for end-use technologies came from [20]. When national data was not avail-
able, international references were assumed, such as for CO2, CH4 and N2O emission factors for power
generation and end-use technologies [59] and for vehicles maintenance costs [60]. This allowed for a
detailed representation of the Peruvian energy system, with data that can be changed over time, as
more information becomes available.

The main projects considered for PERU-TIMES are described in Table 5 in the Appendix. For
some of these projects, the investment decision was already taken by competent authorities and so we
classify them as “Decided”. Others are candidates for PERU-TIMES, that may choose if and when
to invest. For refining, the only project considered was the modernisation of the Talara refinery (that
is expected to be completed in 2021), as no other project is expected to be developed in the study
horizon. Another important assumption was the adoption of an exogenous scenario for domestic oil
production until 2040, provided by MEM’s team.

Natural gas, oil and oil products import and export prices were taken from the “High Resource
and Technology” scenario from EIA’s Energy Outlook [61], which is similar to the reference scenario of
World Bank’s forecast [62]. Prices were internalized according to freight and other transportation costs
(without taxes). Fuel costs for power generation were assumed to follow these international trends.

7 We considered only hydroelectric projects in an advanced stage of studies, environmental certifications and conces-
sions. Renewable projects location and capacity were based on previous renewable auctions in the country. For thermal
plants, generic projects were considered, according to reference international technical-economic parameters [53].
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3.3 Results and Discussion

The energy planning system provides general trends, as well as several specific results. OPTGEN
and OPTNET executions provide the power sector generation and transmission plans. SDDP uses
these plans to determine the optimal stochastic dispatch of each power plant, considering water inflow
uncertainties. It also provides electricity marginal costs. For every single process, TIMES finds its
input and output flows along with investment and operation costs. This section summarizes the main
results of the energy plan draft elaborated for MEM using the tools and assumptions shown in previous
sections. Final results are shown, subsequent to the convergence of the iterative process between CGE
and PERU-TIMES.

Figure 6 shows the average generation per technology (in GWh/year) for the baseline scenario up
to the year 2040. Variable renewable sources lead the electrical expansion, driven by the reduction of
their investment costs. Solar photovoltaic generation has the biggest growth, going from 2% of total
demand in 2018 to 14% in 2040, with significant growth after 2025; wind generation expands from 3%
to 7%. Including hydroelectric generation, the share of “clean” energy in Peru reaches 60% of demand
in 2040.

Fig. 6 Electric Generation by source, for baseline scenario, in GWh. ”Other” includes biomass, coal and oil products.

Hydraulic generation (small hydropower plants included) participation decreases from 63% in 2017
to 40% in 2040. Thermal generation goes from 34% in 2017 to a maximum of 44% in 2024-26 and then
returns to 34% in 2040 (23% from closed cycle natural gas plants, 10% from open cycle gas plants
and 1% from coal). This confirms the role of natural gas as a complementary source to renewable
and hydroelectric plants. It should be noted that natural gas in Peru is provided solely by domestic
production, so external dependence does not increase as a result of demand growth. Generation from
oil products is almost zero during the whole period, given their higher fuel costs. These plants, however,
play an important role to satisfy the reserve margin constraint imposed to the system.

After the construction of the transmission line connecting Peru and Ecuador, net imports of elec-
tricity from that country reach 2% of Peruvian demand during 2024-2029, and 5-6% during 2030-2040.
This is because hydroelectric expansion in Ecuador results in marginal electricity costs in that country
lower than in Peru.

The main natural gas production site in Peru, the Camisea project, has approximately 18.7 TCF
of 3P natural gas reserves8 [58]. Its availability and competitiveness (alongside with existing subsidies
for gas power plants) allow its demand to grow in all sectors: residential, commercial, industrial,
transportation and power generation. This growth is limited, however, by existing infrastructure: the
main processing plant, Malvinas, has been operating near maximum capacity for the past six years
[56]. Although CNPC Gas Processing Plant is planned to enter operation in 2023, TIMES indicates
the need of further investments in processing capacity in 2035 in the baseline scenario. This investment
is anticipated to 2022 in the high demand scenario. As gas production and demand increase, the model
also expands gas transportation capacity beyond already decided investments – such as the SIT GAS
project, planned to enter operation in 2025 (see Appendix).

8 According to SPE classification of reserves, 3P corresponds to the sum of proved, probable and possible reserves.
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Natural gas infrastructure constraints limit the growth to a relatively modest rate of 2.1% per
year in the baseline scenario (Figure 7). This is also explained by the displacement of gas power
plants expansion by renewable sources, mainly from 2026 onwards. Natural gas exports decline in
most scenarios, since the model prioritizes domestic supply. The higher the domestic demand growth,
the greater the drop in gas exports (Figure 7). Current natural gas reserves are enough to ensure a
reliable supply until 2040. However, this study did not evaluate the possibility of new oil and gas fields
discoveries, which can contribute to the decision of whether reserves should be monetized in the short
term, or rather, kept for future exploitation.

Fig. 7 Natural gas production and LNG exports, in PJ.

As seen in Figure 8, major changes in Peruvian oil sector are not expected, and the country remains
a net importer of crude oil. This is related to the adoption of an exogenous scenario for oil production, as
previously mentioned, and to the limitation of refining capacity in the country (new refinery candidates
were not considered, except for the expansion of Talara refinery in 2021).

Fig. 8 Crude oil domestic production and imports, in PJ, by type (heavy, medium and light) and region. Results are
the same for every scenario, since domestic production is exogenous and demand is determined by refining capacity.

Exploitation in the North region declines as reserves are at an advanced level of its useful life. On
the contrary, extraction of heavy crude oil in the East increases, due to the reopening of the North
Peruvian oil pipeline (Figure 8). The Talara refinery expansion (to be completed in 2021) increases
national demand for crude oil, mostly met by imports. Since this refinery stops operations in 2020
to complete its modernization, imports fall dramatically during this year (Figure 8). This project is
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expected to improve the quality of the diesel produced, to comply with the new Peruvian sulfur content
specifications. As a result, it also reduces diesel imports and, consequently, foreign dependence, in the
short term (Figure 9).

Fig. 9 Diesel and other oil products net imports, in PJ, for the baseline scenario. Negative values indicate net exports.
The green line shows import costs, after discounting export revenues.

Residual oil domestic consumption has a strong growth (average of 7.3% per year), especially in
the maritime transport sector. This growth allows absorbing surpluses produced by local refineries,
which are currently exported, as shown in Figure 9. The decline in oil products exports in 2020, that
may be seen in this graphic, is due to the outage of the Talara refinery for modernization.

In the demand side, a slight decrease in LPG consumption is observed in the Central region. The
reason is that this region is where the substitution between natural gas and LPG can be carried out
in greater extension (in other regions, LPG remains a major fuel because the arrival of natural gas is
not economically viable, in addition to firewood replacement for LPG). Considering that LPG is an
imported fuel and that natural gas is cheap and largely available in the Central region, the proposed
substitution policy seems appropriate. Moreover, electric vehicles begin to enter the market by 2029,
after reaching cost parity with respect to internal combustion vehicles.

4 Sensitivity Analyses: simulating policies and shocks on the base case

In addition to the three demand scenarios above, four sensitivities were executed to simulate dif-
ferent policies and shocks on the base case.

1. High international prices for hydrocarbons: simulates the impact of an increase in import and export
prices of natural gas, crude oil and their products. Prices for this sensitivity were taken from EIA’s
“Reference” scenario, instead of the lower prices from “High Resource and Technology” scenario
considered in the remaining scenarios;

2. Hydroelectric capacity target: which requires that hydroelectric plants (small hydro not included)
comprise at least 30% of overall installed capacity, throughout the horizon. Notice that hydropower
generation (GWh) is more than 30% in the baseline scenario, as mentioned in section 3.3, but
capacity comprises only 22% of total installed capacity;

3. Impact of climate change on inflows: simulation of the effects of climate change on hydrology and,
consequently, on power sector generation. For each drainage basin, inflows were modified in SDDP
according to predictions made by CEPAL [63], impacting on water availability for hydropower
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plants9. Besides the change in inflows, we do not consider other effects that climate change could
have on the energy sector, such as increasing demand for cooling, as temperature rises, and possible
impacts on GDP due to mitigation and adaptation costs;

4. Electric vehicles (EVs) promotion policy: instead of optimizing the number of electric vehicles enter-
ing in operation in each year, that number is an input to the model, which is given by the Nationally
Appropriate Mitigation Actions (NAMA) study [64]. This scenario increases and anticipates EVs
penetration, in relation to the base case. For instance, while the model invests on private EVs only
in 2029 for the baseline scenario, this promotion policy considers 2 thousand electric vehicles in
operation already in 2024, increasing to 365 thousand in 2040 (in comparison to 202 thousand for
the base case).

All sensitivities use the same demand from the base scenario. Table 4 shows, for each sensitivity,
the objective function (that is, total costs, including OPEX and CAPEX, discounted to present value),
total CO2 equivalent emissions over the horizon 2017-2040, and consumption of oil products (diesel,
gasoline, fueloil, turbo and LPG), natural gas, electricity, biomass and coal in 2040. The three demand
scenarios (base, low and high) are also shown for comparison. There is little difference between the
objective functions of the seven cases. The biggest difference occurs for the low demand scenario, with
an objective function 6.7% lower than the baseline.

Scenarios Sensitivities

Item Base
High

Demand
Low

Demand
High
Prices

Hydro
Climate
Change

EVs

1. Objective function
(billion 2013 dollars)

240.0 251.6 224.0 241.9 239.8 240.1 240.1

2. Emissions
(million tonnes of CO2e)

4971 5673 4430 4990 4948 4973 4965

3. Total final energy
consumption (PJ)

1711.1 1953.9 1276.9 1716.7 1711.3 1711.0 1703.5

3.1 Oil products 1003 1175 690 988 1002 1003 1001
3.2 Natural gas 305 341 242 325 305 304 297
3.3 Electricity 332 378 267 333 332 332 334
3.4 Biomass 50 39 58 50 50 50 50
3.5 Coal 21 21 21 21 21 21 21

Table 4 Main indicators for the three demand scenarios and sensitivity analyses. Emissions are summed for every year
and energy consumption is shown for the final horizon year (2040) and broke down by source.

High international hydrocarbon prices led to stronger substitution of oil products by natural gas in
transportation and industrial sectors. In turn, this anticipated investment in gas processing capacity
to 2022 (in the baseline scenario it is predicted to 2035) and reduced LNG exports in 2040 by 26%,
when compared to the baseline scenario. There is also an increase in the use of EVs, which explains
the small growth of electricity consumption in this scenario: 1 PJ more than the baseline.

As previously mentioned, in the baseline scenario, hydraulic generation accounts for 37% of the
power mix in 2040. At first, this suggests that hydropower is not competitive with respect to non-
conventional renewable technologies. However, the “hydro” sensitivity analysis reveals that forcing
the investment in hydroelectric plants leads to an overall cost similar to the cost of the baseline
scenario10. Therefore, we conclude that hydroelectric plants have similar competitiveness to a mix of
non-conventional renewable with natural gas plants, which allows more flexibility for decision-making.
A concern that may arise regarding the construction of new hydroelectric capacity is the negative
impacts climate change may have on hydrological flows. However, the sensitivity to climate change did
not result in significant modifications to the annual total hydro generation with respect to the baseline

9 PSR softwares include a time series tool used to predict inflow series for all relevant rivers. In the climate change
scenario, these series were multiplied by factors that represent how much of the inflows in each drainage basin would
increase or decrease in this sensitivity, according to [63].
10 Indeed, the objective function in the “hydro” scenario is 0.1% smaller than the baseline scenario. As hydroelectric

plants replace natural gas in this case, this fuel may be exported, providing additional revenues for Peru.
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scenario. The greatest difference occurs in 2020, when hydro generation is only 0.9% smaller than in
the base case.

Promotion of EVs according to NAMA involves a relatively small cost, increasing the objective
function by less than 0.05% (around 80 million dollars). Electric vehicles displace mainly GNV vehicles,
which explains the decrease in natural gas consumption in this scenario. The decrease in gasoline
consumption is smaller: only 2 PJ in 2040.

While most scenarios simulate the response of the energy system to exogenous situations in which
the decision maker has minimal interference (high, medium and low demand, high prices, climate
change), EVs and hydropower promotion policies depend largely on political decisions for climate
change mitigation. These could cut CO2 cumulative emissions by 6 million and 23 million tonnes,
respectively, up to 2040. Considering only the power sector emissions (Figure 10), the promotion of
hydropower leads to emissions similar to the low demand scenario in the long run.

Fig. 10 Peruvian power sector GHG emissions (comprises CO2, CH4 and N2O gases), in metric tonnes of equivalent
CO2 by MWh of electricity generated. The expansion of natural gas power plants increases GHG emissions. However,
this effect is compensated in the long-run by thermal plants displacement by renewable generation.

5 Conclusions and lessons learned

Herein we presented the energy planning framework developed for MEM. Three main guidelines
were pursued for designing it: economic efficiency, flexibility and consistency. Economic efficiency means
that infrastructure investment and operation must seek the minimum total cost. That is why we opted
for optimization models such as TIMES, OPTGEN, SDDP, OPTNET and CGE, instead of simulation
models such as LEAP [65].

Moreover, since the system is designed to be continuously improved by MEM’s team, the models
should have the flexibility to include increasing level of detail, and to adapt to technology development,
new environmental policies and political decisions. The scenarios and sensitivities analysed in this
paper illustrate the capability of the models to adjust to new data, such as GDP growth, commodities
prices and hydrological inflows, and also to public policies such as hydropower targets, electric vehicles
promotion, and energy efficiency programs – e.g firewood substitution in household consumption.
Renewable power generation and GHG emission targets, regional limitations on diesel sulfur content,
technology efficiency improvement and virtually any constraint may be represented in the models. The
econometric demand model allows for further breakdown of demands, for example, dividing the freight
road transport into various truck segments, or even making spatial breakdown to consider demands of
individual departments or major cities.

As a core aspect of the framework, inputs and outputs of each model are consistent with each
other. This was made by soft-linking all the models in a single framework, in which power transmission
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investments (made by OPTNET) take into account the generation expansion plan (made by OPTGEN)
and power plants fuel consumption (determined by SDDP) is used by TIMES in evaluating biomass,
coal, oil and natural gas infrastructure needs. Consistency between the energy and the remaining
sectors of the Peruvian economy was also sought, by using a general equilibrium model for updating
the demands inputted to TIMES. Results confirm the robustness of the soft-linking procedure and
adequacy of the connection points chosen.

Finally, the greatest contribution of this project was to build capacity along Peruvian institutions,
mainly MEM, in order to analyse and contribute to the development of the energy sector. In this sense,
the draft of the 2040 National Energy Plan presented here was the first study made using the planning
framework developed for MEM. It provides important insights for assisting decision-making, such as
the primacy of non-conventional renewable sources for power generation, especially solar photovoltaic
technology. One of the main conclusions is the need of expanding and modernizing the Peruvian
energy infrastructure, for ensuring safe and continuous supply. Specific projects may be highlighted:
the modernization of the North Peruvian Pipeline and of Talara Refinery, and the expansion of natural
gas processing and transport capacity.
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58. Ministério de Minas e Enerǵıa, “Libro anual de recursos de hidrocarburos al 31 de diciembre del 2016,” tech. rep.,
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7 Appendix: PERU-TIMES projects

Table 7 presents the main projects considered in PERU-TIMES according to their type. Decided
projects are the ones for which the investment decision was already taken by responsible institutions,
entering operation in a specific year that is inputted to the model. For Candidate projects, the model
chooses whether and when to invest. Moreover, only continuous investment variables were considered,
meaning that PERU-TIMES can also choose how much capacity enters operation in each year for
Candidate projects.

Project Type Description

Talara Refinery Modernization Decided

Construction of new processing units and facilities that will increase
Talara refinery capacity, providing diesel with low sulfur content
and the processing of heavier crudes, such as those produced in the
Eastern oil fields of the country. Talara must stop operations in
2020 for completing modernization works.

CNPC Gas Processing Plant Decided
Starts operation in 2023 and will be able to process 360 MMSCFD
of wet gas produced in a new field in Camisea.

Gas Fractionation Plant in La
Convención Province

Decided
Processing capacity is estimated in 3.2 MBPD of NGL. Operations
are expected to begin in 2024.

Expansion of Malvinas Gas
Processing Plant

Candidate
A cost of 1.55 MMUS$ per added PJa was adopted. This investment
option is available for PERU-TIMES from 2022 onwards.

Expansion of Pisco Gas Frac-
tionation Plant

Candidate
A cost of 2 MMUS$ per added PJ-year of capacity was adopted.
This investment option is available for PERU-TIMES from 2022
onwards.

Sistema Integrado de Trans-
porte de Gas Zona Sur del Páıs
(SIT GAS)

Decided

This is an important pipeline project to ensure natural gas sup-
ply to power generation plants, industrial projects and others con-
sumers in the South region. Although uncertain, we consider its
start-up in 2025, with an estimated investment amount of 4400
MMUS$ for a transport capacity of 473 MMSCFD.

Expansion of TGP pipeline Candidate
TGP is the main gas pipeline in Peru. Future expansions of this
pipeline are considered, at a cost per MMSCFD of added capacity
similar to that of historical TGP expansions.

Expansion of NGL pipeline Candidate
Capacity expansions for the pipeline that transports NGL produced
in Malvinas for Pisco Fractionation Plant at a cost of 3.1 million
dollars per MBPD.

Expansion of gas distribution
systems

Candidate
Expansion of city gate capacities. This investment option is avail-
able for PERU-TIMES from 2021 onwards.

Trucks for LNG transport Candidate
Acquisition of new tank trucks for transporting LNG from the liq-
uefaction plant to North and South regions.

Regasification stations Candidate Process of regasification of LNG transported by trucks.

North Peruvian oil pipeline
modernization

Decided

This project includes the automation of valves, replacement of
engines, among other investments in the existing pipeline, which
would total 564 MMUS$ and reduce fixed O&M costs in 15% and
variable costs in 30%.

Industrial end-use technologies Candidate

As mentioned in section 2.2.4, generic processes for converting spe-
cific fuels into energy services (heating, driving force and electric-
ity) for four industry sectors (manufacture, mining and metallurgy,
farming and fishery) were considered. While existing capacities of
these processes were calibrated according to national energy bal-
ances, the model has the possibility of expanding them based on
three major parameters: efficiency (calibrated also according to en-
ergy balances), investment and O&M costs (extracted from [66]).

Transport end-use technologies Candidate

Efficiencies (fuel consumption by kilometer) and vehicle use were
taken from national energy balances, while average mileage, from
data from Brazilian Ministry of Environment, as data for Peru
was missing. Investment and O&M costs were based on data from
IEA-ETSAP [60], NAMA [64] and Peruvian car dealers. For electric
vehicles, we assumed an investment cost decrease of 2% per year for
cars and 3% per year for buses, as in [64]. EVs were not considered
for the Eastern region, as the Amazon region imposes a series of
obstacles for their adoption.

Table 5 Main decided and candidate processes considered in PERU-TIMES.
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