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1 INTRODUCTION 

SDDP-CORAL is PSR's Reliability and Resource Adequacy (RA) model which is available inside 
SDDP at no additional cost for SDDP licensed users. CORAL evaluates the composite (generation-
transmission) supply reliability of large-scale systems, taking into account: 

• Several power systems’ elements, such as: thermal, hydro, non-conventional renewables 
(such as wind, solar, biomass, etc.) transmission lines, storage devices among others; 

• Generation and transmission outages; 

• Hydrological uncertainty; 

• The effect of hydrological uncertainty on reservoir storage levels – and hence, on hydro 
production capacity; 

• Production uncertainty of renewable generation such as wind, solar, biomass, and small 
hydro; 

• Load variation; 

• State of the art methodology: 

o Efficient implementation of the main reliability evaluation algorithms; 

o Novel simulation algorithm that allows a more realistic representation of small 
storage devices, such as batteries and Concentrated Solar Power plants (CSPs). 

CORAL presents three different hierarchical levels: 

• Generation system: evaluates the existence of sufficient generators within the system to meet 
the demand taking into consideration generation failures; 

• Transmission system: evaluates the integrity of the transmission system and its ability to 
transport the necessary power from the generation to the load taking into consideration 
transmission failures; 

• Composite system: evaluates the reliability of the given power system taking into 
consideration both generation and transmission failures. 

It is worth mentioning that CORAL performs system adequacy assessment that is related to the 
existence of sufficient facilities within the system to meet the demand not considering aspects 
related to system security assessment, i.e., the ability of the system to respond to disturbances, 
including the minor and major disturbances that result in dynamic, transient or voltage instability 
of power systems. 

Furthermore, in terms of the solution approach, CORAL performs Monte Carlo-based simulation 
methods, in which random statistical sampling mechanisms are utilized in the contingency 
selection, considering, additionally, stochastic processes that describe the uncertainties 
associated with the demand, hydrological state, renewable sources, etc. The figure below 
illustrates in a didactic way the objectives of these types of studies: 
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Figure 1.1 – Exemplification of a system adequacy assessment study 

Furthermore, it is worth mentioning that CORAL presents three different solution methods: 

• Monte Carlo Non-Sequential: in this solution strategy, a state sampling approach is applied, in 
which case the state space is randomly sampled without reference to the system operation 
chronology; 

• Monte Carlo Pseudo-Sequential: in this solution strategy, the non-sequential method is used 
to sample the state spaces and after that, a chronological phase is added to investigate the 
sub-sequences of the loss-of-load states. In other words, the non-sequential strategy is used 
to identify failure states. Then, for each contingency scenario (or reliability scenario that will 
be defined in detail in the next section), if a failure state is identified, the chronological phase 
is done. Otherwise, the model moves on to the next contingency scenario. This approach 
allows the calculation of the frequency and duration reliability indices. 

• Monte Carlo Pseudo-Interval: in this solution strategy, first, the Pseudo-Sequential approach 
is applied to identify the region around the failures and after that, a new phase is added to 
reoptimize the small storage devices (such as batteries) within the period to identify whether 
the system would have conditions to prevent the failure. 

The three solution methods will be explained in detail throughout this document, however, the 
diagram below is intended to provide a general and initial overview of SDDP-CORAL: 



S D D P - C O R A L  M E T H O D O L O G Y  M A N U A L  

 PSR 3 

 

Figure 1.2 – General overview of the SDDP-CORAL model 
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2 BASIC CONCEPTS AND DEFINITIONS 

2.1 Two-state Markov model components 

The two-state Markov model is largely applied in stochastic simulations due to the facts that (i) 
many power system components (generation units, transmission lines, transformers, etc.) can be 
represented as a random binary variable (1 = operating, 0 = failed) and (ii) the assumption that 
the operating states of these components follow an exponential distribution (“no memory” 
properties).  

 

Figure 2.1 – Two-state Markov model components1 

2.2 Generation contingency scenario 

A generation contingency scenario corresponds to the power availability of every generation 
plant given the outages of a number of generating units as a function of the forced outage rate, 
which is an input data for the CORAL model.  

If the two-state Markov model would be applied in the task, the procedure to evaluate the 
production capacity of a plant (considering outages in the generating units) would consist in 
sampling a random number between 0 and 1 from a uniform distribution and comparing it to the 
outage rate given by the user. If the number is smaller than the rate, then the generating unit is 
not available at the scenario. On the other hand, if the number is greater than the rate, then the 
unit is available for operating. The available power of each plant is obtained by multiplying the 
number of available units by the capacity of each one of them. 

Let 𝜂𝜂𝑖𝑖  be the number of generating units, 𝜏𝜏𝑖𝑖  be the outage rate of the plant 𝑖𝑖 and 𝜆𝜆 be the number 
of operating units. Then, to obtain plant 𝑖𝑖 capacity, we would perform the following steps: 

 Initialize the number of operating units, 𝑘𝑘 = 0 

 For each unit 𝑛𝑛 = 1, … , 𝜂𝜂𝑖𝑖  

  Sample a number 𝛿𝛿 from a uniform distribution (0,1) 

  If  𝛿𝛿 > 𝜏𝜏𝑖𝑖 , increase the number of operating units: 𝑘𝑘 = 𝑘𝑘 + 1 

                                                             

 
1 MTTF: mean time to failure; MTTR: mean time to repair. 
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 The capacity of the generator is given by 𝑔̅𝑔𝑙𝑙 = 𝑔̅𝑔 × 𝑘𝑘
𝜂𝜂𝑖𝑖

 

As can be seen, the two-state Markov model could immediately be applied to represent each 
generating unit. However, this approach is inefficient when there are many units per plant. A 
more efficient approach is to sample the total available capacity of the plants from a binominal 
distribution: 

𝑓𝑓(𝑘𝑘;𝑛𝑛;𝑝𝑝) = �𝑛𝑛𝑘𝑘� 𝑝𝑝
𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘  (1) 

where:  
𝑘𝑘 is the number of available units 
𝑛𝑛 is the number of total units 
𝑝𝑝 is the stationary probability p(failure) of a unit 

The performance improvement is due to the fact that (for each plant) the distribution function 
𝑓𝑓(𝑘𝑘;𝑛𝑛; 𝑝𝑝) can be used to construct a discrete cumulative distribution, given by the table: 
[𝑃𝑃(0;𝑛𝑛; 𝑝𝑝) 𝑃𝑃(1;𝑛𝑛; 𝑝𝑝) 𝑃𝑃(2;𝑛𝑛; 𝑝𝑝) ⋯ 𝑃𝑃(𝑛𝑛 − 1;𝑛𝑛;𝑝𝑝) 𝑃𝑃(𝑛𝑛;𝑛𝑛; 𝑝𝑝)], before the simulation 
process. 

During the simulation process, the number of available units is sampled from the pre-calculated 
table: 

 

Figure 2.2 – The sampling process of the number of available units 

In summary, for the generation contingency scenarios, CORAL uses a discrete cumulative 
distribution for each plant, as explained above. 

2.2.1 Considering the effect of the variation of the hydroelectric power with respect to the 
net head of a reservoir in the calculation of the reliability statistics 

In order to use this feature, the user must activate the “Use SDDP hydro capacity limit” option 
available on the “Reliability analysis > Reliability options” screen. For further details, please 
check CORAL’s User Manual. This option allows the integration with the results of a previous 
SDDP run by using the following output: "Hydro Capacity (no outages)". It can be used to 
represent the variability in the capacity due to the variation of the production coefficient 
according to the volume stored in the reservoir. If the SDDP run was stochastic, the hydro 
capacities will vary per scenario. 

In other words, depending on the hydrological scenario, the available power of hydroelectric 
plants may be affected by operative decisions. For hydroelectric plants with reservoirs, the power 
depends on the net head – difference between forebay and tailwater elevation. As a consequence, 
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to consider the effect of the variation of the hydroelectric power with respect to the net head of a 
reservoir in the calculation of the reliability statistics, it is required to previously run a stochastic 
simulation of the system operation using the SDDP model to obtain the scenarios of stored volume 
in each reservoir of each hydroelectric plant in each stage. 

We obtain the available power capacity of the hydroelectric plants with reservoir using the 
production coefficient, which varies as a function of the net head of the reservoir: 

𝑔̅𝑔𝑖𝑖ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀{𝑔̅𝑔𝑖𝑖 ,𝑞𝑞�𝑖𝑖 × 𝜌𝜌(𝑉𝑉𝑖𝑖)} (2) 

Where 𝑔̅𝑔𝑖𝑖  is the installed capacity, 𝑞𝑞�𝑖𝑖  is the maximum turbining outflow and 𝜌𝜌(𝑉𝑉𝑖𝑖) is the 
production factor (which depends on the storage level 𝑉𝑉𝑖𝑖) of the hydroelectric plant 𝑖𝑖.  

With respect to run-of-the-river plants (RoRs), first it is important to remind that each RoR has a 
modulation factor. In the case of a run-of-river plant with modulation factor equal to zero, this 
means it has free regulation, i.e., all the water that arrives in each load block can be used in any 
other load block. This factor is continuous from 0 to 1 (it can be 0.2, 0.3, 0.87, etc.) and 1 means 
that the plant does not have any regulation capacity within the stage, i.e., the water that arrives 
in load block 1, or it is turbined or spilled in load block 1, there is no way to take this amount of 
water to any other block. As a consequence, the RoR capacities written in the "Hydro Capacity (no 
outages)" SDDP output will be as follows:  

• For RoRs with modulation factor = 0:  

o The same equation applied to hydroelectric plants with reservoir is used:     

 𝑔̅𝑔𝑖𝑖ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀{𝑔̅𝑔𝑖𝑖 ,𝑞𝑞�𝑖𝑖 × 𝜌𝜌(𝑉𝑉𝑖𝑖)}; 

• For RoRs with modulation factor > 0:  

o For each load block b, we calculate the capacity associated with the water that cannot 
be transferred to another block: 

 𝑔̅𝑔1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 𝑔𝑔𝑏𝑏; 

o Then, we calculate the “free” generation of the other load blocks that can be 
transferred to the current block b as follows: 

 𝑔̅𝑔2 = (1 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) × 𝑔̅𝑔𝑖𝑖; 

o Finally: 

 𝑔̅𝑔𝑖𝑖ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀{(𝑔̅𝑔1 + 𝑔̅𝑔2), 𝑔̅𝑔𝑖𝑖}; 

Finally, it is worth mentioning that, while using this option, in each reliability scenario, an SDDP 
forward scenario will be sampled. 

2.3 Circuit contingency scenario 

While evaluating circuit contingency scenarios, circuit (transmission lines, transformers, etc.) 
contingencies will be sampled.  
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Let 𝜂𝜂𝑖𝑖  be the number of circuits that are part of the contingency list, 𝜏𝜏𝑖𝑖  be the outage probability 
of the circuit 𝑖𝑖, 𝜆𝜆 be the number of circuits under contingency and 𝑁𝑁𝑁𝑁 the total number of circuits 
of the transmission system. 

 Then, we would perform the following steps: 

 Initialize the number of circuits under contingency, 𝑐𝑐 = 0 

 For each circuit that is part of the contingency list 𝑛𝑛 = 1, … , 𝜂𝜂𝑖𝑖  

  Sample a number 𝛿𝛿 from a uniform distribution (0,1) 

  If  𝛿𝛿 < 𝜏𝜏𝑖𝑖 , increase the number of circuits under contingency: 𝑐𝑐 = 𝑐𝑐 + 1 

  And of course, to apply contingency in this circuit, all its data is needed (bus from, bus to, 
location, electrical parameters, etc.). 

After knowing the state of all the circuits, the system adequacy is evaluated using a DC Optimal 
Power Flow (DC OPF o linearized OPF) modeling. CORAL adopts the linearized active power flow 
instead of the non-linear power flow due to the following reasons: 

• The linearized model provides a good approximation for power flows in meshed high 
voltage networks. It does not have convergence problems, which are common in non-
linear power flow calculations (especially when the network is not reinforced); 

• It is easier to be applied while dealing with circuit contingencies and islanding of buses. 

2.3.1 Formulation of the linearized power flow 

The linearized power flow model of an AC system is expressed by the Kirchhoff’s laws presented 
next. 

2.3.1.1 Kirchhoff’s first law 

This law represents the active power balance in each AC bus (for notational simplicity, we 
suppose that each bus has generation and load): 

� 𝑓𝑓𝑘𝑘 + 𝑔𝑔𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,∀ 𝑖𝑖 = 1, … , 𝐼𝐼
𝑘𝑘 ∈ Ω𝑖𝑖

 (3) 

where: 

𝑖𝑖 indexes the AC buses  

𝑘𝑘 indexes the circuits (𝐾𝐾 is the number of circuits) 

Ω𝑖𝑖  is the set of circuits directly connected to bus 𝑖𝑖 

𝑔𝑔𝑖𝑖  is the generation of AC bus 𝑖𝑖 (MW) 

𝑑𝑑𝑖𝑖  is the load of AC bus 𝑖𝑖 (MW) 

𝑓𝑓𝑘𝑘 is the active power flow in the circuit 𝑘𝑘 (MW) 

𝐼𝐼 is the number of AC buses 

The last equation can be represented in matrix form as: 
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𝑆𝑆 𝑓𝑓 + 𝑔𝑔 = 𝑑𝑑 (4) 

where: 

𝑆𝑆 is the incidence matrix of dimension 𝐼𝐼 × 𝐾𝐾, whose 𝑘𝑘-th column has 
zeros in all rows except those of the bus terminals of the 𝑘𝑘-th circuit, 
𝑖𝑖𝑘𝑘 and 𝑗𝑗𝑘𝑘 

𝑓𝑓 is the 𝐾𝐾-dimensional vector of circuits flows (MW) 

𝑔𝑔 is the 𝐼𝐼-dimensional vector of AC bus generations (MW) 

𝑑𝑑 is the 𝐼𝐼-dimensional vector of AC bus loads (MW) 

2.3.1.2 Kirchhoff’s second law 

For each AC circuit this law is expressed by: 

𝑓𝑓𝑘𝑘 = γ𝑘𝑘�θ(𝑖𝑖𝑘𝑘) −  θ(𝑗𝑗𝑘𝑘)� (5) 

where: 

γ𝑘𝑘 is the circuit susceptance (inverse of reactance) 

θ(𝑖𝑖𝑘𝑘) is the voltage angle of the circuit’s terminal bus 𝑖𝑖𝑘𝑘 (rad) 

θ(𝑗𝑗𝑘𝑘) is the voltage angle of the circuit’s terminal bus 𝑗𝑗𝑘𝑘 (rad) 

Last equation can be represented in matrix form as: 

𝑓𝑓 = |𝛾𝛾| 𝑆𝑆′ θ (6) 

where: 

|𝛾𝛾| is the diagonal 𝐾𝐾 × 𝐾𝐾 matrix of circuit susceptances 

𝑆𝑆′ is the transpose matrix of 𝑠𝑠 (dimension 𝐾𝐾 × 𝐼𝐼) 

θ is the 𝐼𝐼-dimensional vector of AC bus voltage angles (in radians) 

2.3.1.3 DC network  

In case there are DC links in the network, the linearized power flow also represents balance 
equations for DC buses. A DC bus has no generation or load, so its balance equation is expressed 
as: 

𝑆𝑆𝐷𝐷 𝑓𝑓𝐷𝐷 +  𝑆𝑆𝐼𝐼𝐷𝐷𝐷𝐷  𝑓𝑓𝐼𝐼 = 0 (7) 

where 𝑓𝑓𝐷𝐷 denotes the vector of flow variables for DC links and 𝑆𝑆𝐷𝐷 denotes the incidence matrix of 
the DC system; 𝑓𝑓𝐼𝐼 is the vector of flow variables for AC/DC Converter and 𝑆𝑆𝐼𝐼𝐷𝐷𝐷𝐷  is the DC part of the 
AC-DC incidence matrix, i.e. it contains +1/-1 for DC buses depending if the AC/DC converter is 
defined as an inverter or a rectifier. Note that the flow in a DC link or AC/DC Converter is not 
subject to Kirchhoff’s second law. The flow variables for DC links and AC/DC Converter have 
lower and upper limits whose values may vary for each load block. 
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Since total load matches total generation for each dispatch scenario, the lower and upper flow 
limits for the DC system components must not block the given AC/DC Converter flows; if this 
happens load will be shed, as well as re-dispatch of generation needed to restore balance. 

2.3.1.4 Solving the linearized power flow equations for AC network 

Given the generation vector 𝑔𝑔 and load vector 𝑑𝑑 for a dispatch scenario, the corresponding power 
flows are calculated as follows. Suppose initially that there are no DC links. Substituting 𝑓𝑓 as 
defined in (6) into equation (4), results 

 

𝐵𝐵 θ + 𝑔𝑔 = 𝑑𝑑 (8) 

where 𝐵𝐵 = 𝑆𝑆 |𝛾𝛾| 𝑆𝑆′ is a 𝐼𝐼 × 𝐼𝐼 matrix known as the susceptance matrix2. Next, the linear system is 
solved and the bus voltage angle vector 𝜃𝜃 3 is obtained: 

θ = 𝐵𝐵−1(𝑑𝑑 − 𝑔𝑔) (9) 

Finally, the solution 𝜃𝜃 is applied to equation (6) and the power flow vector 𝑓𝑓 is obtained. 

2.3.1.5 Solving the linearized power flow equations for DC network 

If the network has DC links, power flows are obtained solving first the AC network equations, 
adding to the AC bus balance equations AC/DC Converter flow variables associated to the dispatch 
scenario:  

𝐵𝐵 θ −  𝑆𝑆𝐼𝐼𝐴𝐴𝐴𝐴  𝑓𝑓𝐼𝐼 + 𝑔𝑔 = 𝑑𝑑 (10) 

where 𝑆𝑆𝐼𝐼𝐴𝐴𝐴𝐴  is the AC part of the AC-DC Converter incidence matrix, i.e., it contains -1/+1 for AC 
buses depending on if the AC/DC converter is defined as an inverter or a rectifier.  

Assuming that 𝑓𝑓𝐼𝐼 is known (operation point of the AC/DC Converters), the voltage angle vector 𝜃𝜃 
can be evaluated by the solution of the following linear system: 

θ = 𝐵𝐵−1�𝑑𝑑 − 𝑔𝑔 + 𝑆𝑆𝐼𝐼𝐴𝐴𝐴𝐴  𝑓𝑓𝐼𝐼� (11) 

Solved the linear system, AC power flow 𝑓𝑓 can be determined by equation (6) and DC power flow 
𝑓𝑓𝐷𝐷 by solving the linear system (7).  

On the other hand, if the operating setpoints of the AC/DC Converters are unknown, power flow 
on both systems are evaluated by solving a LP program that considers equations (6), (7) and the 
vector 𝑓𝑓𝐼𝐼 as a free variable, as showed next. 

                                                             

 
2 Look that after sampling the outages of the circuits, CORAL will calculate the susceptance matrix based on the states 
of all circuits of the network. 
3 Since matrix 𝐵𝐵 has rank 𝐼𝐼 − 1, calculating its inverse matrix 𝐵𝐵−1 requires eliminating a bus of the matrix 𝐵𝐵 – for 
example, the bus number 𝜄𝜄 (this is equivalent to eliminate the row and the column associated to the bus 𝜄𝜄). The solution 
is written as θ� = 𝐵𝐵�−1(𝑑̃𝑑 − 𝑔𝑔�), where ~ represents matrices and vectors without bus 𝜄𝜄, known as the reference bus. 
The voltage angle of bus 𝜄𝜄, θ𝜄𝜄, is taken as zero. To simplify notation, a zero row and a zero columns are included in 
matrix 𝐵𝐵�−1, corresponding to matrix 𝐵𝐵−1. 
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2.3.1.6 Final DC OPF formulation used by SDDP-CORAL  

Now, taking the aforementioned subsections into account, the final DC OPF formulation used by 
SDDP-CORAL will be presented contemplating the linearized power flow equations for the AC and 
the DC systems simultaneously. 

When operating setpoints of AC/DC Converters are unknown, power flows are calculated by the 
solution of the DC OPF model presented below. It is possible to observe that in each reliability 
scenario, the DC OPF problem (𝑃𝑃) is solved to obtain the reliability results, taking into account 
the system state (stage/block configuration, sampled generator capacities, sampled circuit states, 
demand scenario, renewable generation scenario, etc.):   

𝑧𝑧 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑟𝑟𝑖𝑖

𝐼𝐼

𝑖𝑖=1

 (12) 

Subject to: 

𝑆𝑆𝐷𝐷 𝑓𝑓𝐷𝐷 +  𝑆𝑆𝐼𝐼𝐷𝐷𝐷𝐷  𝑓𝑓𝐼𝐼 = 0 (13) 

𝐵𝐵θ −  𝑆𝑆𝐼𝐼𝐴𝐴𝐴𝐴  𝑓𝑓𝐼𝐼 + 𝑔𝑔 + 𝑟𝑟 = 𝑑𝑑 (14) 

𝑓𝑓𝐼𝐼 ≤ 𝑓𝑓𝐼𝐼 ≤ 𝑓𝑓𝐼𝐼 (15) 

𝑟𝑟 ≤ 𝑑𝑑 (16) 

 

where: 

𝑧𝑧 is the total load shedding (MW) 

𝑟𝑟 is the vector of variables representing the bus load shedding (MW) 

𝑓𝑓𝐼𝐼 , 𝑓𝑓𝐼𝐼 are the operational limits for AC/DC Converters 

As can be seen, since the objective function is to minimize load shedding, after solving the 
aforementioned optimization problem, the 𝑧𝑧∗, which is the optimal result of the objective 
function, can be interpreted as the Expected Power Not Supplied (EPNS) for that given reliability 
scenario.  
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3 SOLUTION METHODS 

3.1 Monte Carlo Non-Sequential 

First of all, as explained in CORAL’s User Manual, let 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  be the number of contingencies per 
stage, 𝐵𝐵 be the number of selected load blocks and 𝑁𝑁𝑁𝑁𝑏𝑏  be the number of contingencies per block. 
Then: 

𝑁𝑁𝑁𝑁𝑏𝑏 =
𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵
 (17) 

Now, for each contingency scenario 𝑁𝑁𝑁𝑁𝑏𝑏 , in this solution strategy, a state sampling approach is 
applied in which the state space is randomly sampled without reference to the system operation 
chronology. The Monte Carlo Non-Sequential solution method is explained through the script 
presented below: 

\\ Enumerate stages of CORAL’s study horizon 

For each stage 𝑡𝑡 = 1, … ,𝑇𝑇 do 

  \\ For each selected load block  

  For each load block 𝑏𝑏 = 1, … , B: 

   \\ For each contingency scenario (or reliability scenario) 

   For each contingency scenario state 𝑛𝑛 = 1, … ,𝑁𝑁𝑁𝑁𝑏𝑏: 

    Step 1:  

     Sample one hour if the reliability study has hourly resolution, otherwise go 
directly to Step 2. 

    Step 2:  

     Sample one SDDP forward scenario: 

      - Always necessary for renewable and demand scenarios (in case they 
exist); 

      - Necessary for hydro plants when the “Use SDDP’s hydro capacity limit” 
option is selected; 

      - Necessary for batteries when one of the following options is selected: 
“Limit by storage (in addition to the capacity)” or “Use fixed injections calculated by SDDP”. 

    Step 3:  

     Sample component states. 

    Step 4:  

     Evaluate system adequacy. 

    Step 5:  

     Update reliability indices. 
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3.1.1 Flowchart to summarize this solution method 

The aforementioned script is summarized in the flowchart presented below: 

 

Figure 3.1 – The flowchart of the Monte Carlo Non-Sequential solution method 

It is worth noting that: 

Even if the reliability study has hourly resolution, the reliability indices will be computed per load 
block; 

• If the hierarchical level selected on the “Execution options > Reliability analysis > 
Reliability options” screen is “Generation”: in Step 4, CORAL will only compare the total 
available power with the demand of that given stage, scenario and load block (or hour); 

• If the user activates the “Transmission” hierarchical level on the “Execution options > 
Reliability analysis > Reliability options” screen and the “No network or interconnections 
only” option on the “Execution options > Economic dispatch > Transmission and gas 
pipeline” screen: in Step 4, CORAL will formulate an optimization problem minimizing 
load shedding with multi-area representation (i.e., representing only Kirchhoff’s first law 
and interconnection flow limits) in order to check if the total available power meets the 
demand of that given stage, scenario and load block (or hour); 

• If the user activates the “Transmission” hierarchical level on the “Execution options > 
Reliability analysis > Reliability options” screen and the “Linear power flow” option on 
the “Execution options > Economic dispatch > Transmission and gas pipeline” screen: in 
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Step 4, the DC OPF problem (𝑃𝑃), described in section “Final DC OPF formulation used by 
SDDP-CORAL” will be solved.  

 

 

For more details regarding hierarchical levels and transmission representation options, please 
check the diagram below: 

 

Figure 3.2 – Hierarchical levels and transmission representation options 

For more details about the calculation of the reliability indices, please check chapter 4 of SDDP-
CORAL’s User Manual. 

3.2 Monte Carlo Pseudo-Sequential 

3.2.1 Introduction 

The stochastic simulation method presented in the previous section is the Non-Sequential Monte 
Carlo Simulation (MCS), which is computationally efficient but, as the name implies, does not 
represent the chronology of events in the reliability assessment.  

However, power systems may have important components that require chronological modeling 
to produce more realistic results. For example, to assess more accurately the impact of batteries 
on the reliability of power systems, one must consider the evolution of their charge and discharge 
along the entire duration of the failures. 

A perfect representation of the chronology of events can be achieved with the Sequential MCS. 
However, the sequential approach has a very high computational cost, which can be prohibitive 
depending on the system being assessed.  

For this reason, we implemented in Coral a hybrid methodology known as Pseudo-Sequential 
MCS, that achieves the same accuracy as Sequential MCS, but with a much lower computational 



S D D P - C O R A L  M E T H O D O L O G Y  M A N U A L  

 PSR 14 

cost. The Pseudo-Sequential MCS scheme identifies system failure states in a non-sequential way, 
but evaluates each identified state chronologically, and has been effectively applied, for example, 
to estimate frequency & duration reliability indices such as LOLF and LOLD. 

3.2.2 The Monte Carlo Pseudo-Sequential Approach description 

In the pseudo-sequential simulation, the failure states could be identified in a similar way to the 
non-sequential simulation, however, as it is eventually necessary to analyze the chronology of 
events around the failure occurrences, it is usual that instead of sampling the states of the system 
components directly from their operation/failure probabilities, a large number of chronological 
scenarios are generated a priori for all system components and then, during the simulation, a 
sample of the system state is taken as a sample of a “specific photograph” within the chronological 
scenarios generated. 

In the method proposed for CORAL, however, it starts from the premise that the operating states 
of the components follow the exponential distribution, which are “memoryless” distributions, and 
explores their properties so that the states can be sampled in a way totally analogous to the non-
sequential approach, eliminating the need to generate this large set of chronological scenarios in 
advance. 

3.2.2.1 Sampling procedure, first phase 

Thus, for this first non-sequential phase, given a stage 𝑡𝑡, block 𝑏𝑏, each sample of the state of the 
system in each “reliability scenario” corresponds to: 

1. One sample of a “forward” SDDP scenario s; 
2. One sample of an HOUR h belonging to block b; 
3. One sample of the system component states: 

a. Thermal plants: 

For each plant 𝑖𝑖, we sample the number of available units (𝑥𝑥𝑇𝑇𝑇𝑇), given the total 
number of units (𝑁𝑁𝑇𝑇𝑇𝑇) from the failure probability of each unit (𝑝𝑝𝑇𝑇𝑇𝑇) and the 
binomial distribution: 

                                                                  𝑥𝑥𝑇𝑇𝑇𝑇~𝐵𝐵(𝑁𝑁𝑇𝑇𝑇𝑇 ,𝑝𝑝𝑇𝑇𝑇𝑇) (18) 

b. Hydro plants: 

For each plant 𝑖𝑖, sample the number of units available (𝑥𝑥𝐻𝐻𝐻𝐻), given the total 
number of units (𝑁𝑁𝐻𝐻𝐻𝐻) from the failure probability of each unit (𝑝𝑝𝐻𝐻𝐻𝐻) and the 
binomial distribution: 

                                                                  𝑥𝑥𝐻𝐻𝐻𝐻~𝐵𝐵(𝑁𝑁𝐻𝐻𝐻𝐻 ,𝑝𝑝𝐻𝐻𝐻𝐻) (19) 

Obtain the available capacity (without outages) associated to stage t, forward 
scenario s, block b (resulting from SDDP’s system operation): 

 

                                                                  𝑃𝑃𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑠𝑠, 𝑏𝑏) (20) 

c. Renewable plants: 
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For each plant 𝑖𝑖, we sample the number of units available (𝑥𝑥𝑅𝑅𝑅𝑅), given the total 
number of units (𝑁𝑁𝑅𝑅𝑅𝑅) from the failure probability of each unit (𝑝𝑝𝑅𝑅𝑅𝑅) and the 
binomial distribution: 

                                                                  𝑥𝑥𝑅𝑅𝑅𝑅~𝐵𝐵(𝑁𝑁𝑅𝑅𝑅𝑅 ,𝑝𝑝𝑅𝑅𝑅𝑅) (21) 

Obtain the renewable energy production associated to stage t, forward scenario 
s, hour h: 

                                                                  𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑠𝑠, ℎ) (22) 

d. Loads: 

For each load i, obtain its respective value associated to stage t, hour h: 

                                                                  𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝑡𝑡, ℎ) (23) 

e. Batteries: 

For each battery i, obtain the net injection associated to stage t, forward scenario 
s, hour h: 

                                                                   𝐼𝐼𝑏𝑏𝑏𝑏 = 𝐼𝐼𝑏𝑏𝑏𝑏(𝑡𝑡, s, ℎ) (24) 

From the sampled states of the components, the system adequacy is calculated, verifying whether 
the current state is a successful state, such that all the demand can be met while respecting the 
electrical constraints of the system in the state, or whether it is a failure state, requiring load 
shedding. 

If it is a successful state, the reliability indexes are updated, and we move to the next state. If it is 
a failure state, we move to the chronological analysis process of the failure in order to identify the 
beginning and duration of the failure. 

3.2.2.2 Chronological simulation, second phase 

The chronological phase of the method is divided into two sub-phases: (i) backward sub-phase, 
in which we proceed “backwards” in time, starting from the current state until the first hour of 
the failure state is identified; and (ii) forward sub-phase, in which one proceeds the direct 
chronological sequence, until the last hour of the failure state is identified. The result of both sub-
phases is the total duration of the failure state.  

As mentioned, knowing only the outage probability of each component is not enough in this 
chronological phase; it is also necessary to know the average repair time of each component, also 
known as the mean time to repair (MTTR), so as to estimate the failure and repair rates of each 
component, 𝜆𝜆 and 𝜇𝜇, respectively.  

If a component is operating, the time it will take for it to fail, given the exponential distribution, 
can be sampled from: 

𝑇𝑇𝑓𝑓 = −
1
𝜆𝜆

log(𝑢𝑢) (25) 

Where u s a random number sampled from the uniform distribution 𝑢𝑢~𝑈𝑈(0,1) 
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Similarly, if a component is under a failure, the time it will take to repair it, given the exponential 
distribution, can be sampled from: 

𝑇𝑇𝑅𝑅 = −
1
𝜇𝜇

log(𝑢𝑢) (26) 

Thus, in the proposed approach, given the states 𝑥𝑥(𝑖𝑖) of each of the 𝑖𝑖 components in the 
“snaptshot” obtained for the system failure state, we carry out for each component: 

1. Verify whether 𝑥𝑥(𝑖𝑖) is an “operating” or “failed” state of the component; 
2. If 𝑥𝑥(𝑖𝑖) is operating:  

a. Sample the time to failure, 𝑇𝑇𝑓𝑓(𝑖𝑖); 
b. Sample the time 𝑡𝑡(𝑖𝑖) associated to the system failure “snapshot” from the uniform 

distribution 𝑡𝑡(𝑖𝑖)~𝑈𝑈 �0,𝑇𝑇𝑓𝑓(𝑖𝑖)�; 

c. Calculate the number of steps (hours) required for the component to transition 
from the operating state to the failed state in the backward phase as 𝑡𝑡(𝑖𝑖); and the 
number of steps (hours) required for the component to transition from the failed 
state to the operating state in the forward phase as 𝑇𝑇𝑓𝑓(𝑖𝑖)- 𝑡𝑡(𝑖𝑖). 

3. If 𝑥𝑥(𝑖𝑖) is failed: 
a. Sample the time to repair, 𝑇𝑇𝑅𝑅(𝑖𝑖); 
b. Sample the time 𝑡𝑡(𝑖𝑖) associated to the system failure “snapshot” from the uniform 

distribution 𝑡𝑡(𝑖𝑖)~𝑈𝑈�0,𝑇𝑇𝑅𝑅(𝑖𝑖)�; 
c. Calculate the number of steps (hours) required for the component to transition 

from the operating state to the failed state in the backward phase as 𝑡𝑡(𝑖𝑖); and the 
number of steps (hours) required for the component to transition from the failed 
state to the operating state in the forward phase as:  𝑇𝑇𝑅𝑅(𝑖𝑖)- 𝑡𝑡(𝑖𝑖). 

From this initial definition of the transitions “around” (before/after) the failure, the backward 
phase of the simulation can be started: 

1. Initialize step 𝑡𝑡 = 1 as the first hour before the failure state starts; 
2. Verify for each component 𝑖𝑖 of the system if it reached the moment of state transition, that 

is, if 𝑡𝑡 = 𝑡𝑡(𝑖𝑖); 
a. If the component must transition at this moment, its status 𝑥𝑥(𝑖𝑖) is updated and 

the number of hours required for the next transition is sampled, using either 𝑇𝑇𝑓𝑓(𝑖𝑖) 
or 𝑇𝑇𝑅𝑅(𝑖𝑖) depending on the new state of the component. 

3. Define the hour associated to the current backward step, ℎ1 = ℎ − 𝑡𝑡, and obtain the block 
𝑏𝑏2 associated to the hour ℎ1; 

4. Update the variables of the system components that depend on the hour, or block, as: 
a. Hydro plants: 

                                    𝑃𝑃𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑠𝑠, 𝑏𝑏2) (27) 

b. Renewable plants: 

                                    𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑠𝑠, ℎ1) (28) 

 

c. Loads: 
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                                    𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝑡𝑡, ℎ1) (29) 

d. Batteries: 

                                    𝐼𝐼𝑏𝑏𝑏𝑏 = 𝐼𝐼𝑏𝑏𝑏𝑏(𝑡𝑡, s, ℎ1) (30) 

 

5. Evaluate system supply adequacy for the new operation point:  
a. If the system is still in the failure state, increment the backward step, 𝑡𝑡 = 𝑡𝑡 + 1, 

and return to step 2; 
b. If the system transitions to a “success state”, register the total time required to 

obtain the success state, 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑡𝑡 and proceed to the forward phase of the do 
algorithm.  

The forward phase is similar to the backward phase; however, the transitions are performed in 
the direct time of the simulation: 

1. Initialize step 𝑡𝑡 = 1 as the first hour after the failure state starts; 
2. Verify for each component 𝑖𝑖 of the system if it reached the moment of state transition, that 

is, if 𝑡𝑡 = 𝑇𝑇𝑓𝑓(𝑖𝑖)- 𝑡𝑡(𝑖𝑖); 
a. If the component must transition at this moment, its status 𝑥𝑥(𝑖𝑖) is updated and 

the number of hours required for the next transition is sampled, using either 𝑇𝑇𝑓𝑓(𝑖𝑖) 
or 𝑇𝑇𝑅𝑅(𝑖𝑖) depending on the new state of the component. 

3. Define the hour associated to the current backward step, ℎ2 = ℎ + 𝑡𝑡, and obtain the block 
𝑏𝑏2 associated to the hour ℎ2; 

4. Update the variables of the system components that depend on the hour, or block, as: 
a. Hydro plants: 

                                   𝑃𝑃𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑠𝑠, 𝑏𝑏2) (31) 

b. Renewable plants: 

                                    𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑠𝑠, ℎ2) (32) 

c. Loads: 

                                     𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝑡𝑡, ℎ2) (33) 

d. Batteries: 

                                    𝐼𝐼𝑏𝑏𝑏𝑏 = 𝐼𝐼𝑏𝑏𝑏𝑏(𝑡𝑡, s, ℎ2) (34) 

 

5. Evaluate system supply adequacy for the new operation point:  
a. If the system is still in the failure state, increment the forward step, 𝑡𝑡 = 𝑡𝑡 + 1, and 

return to step 2; 
b. If the system transitions to a “success state”, register the total time required to 

obtain the “success state”, 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑡𝑡 and the chronological phase of the algorithm 
is finalized.  
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At the end of the process, the estimated failure duration is given by 𝐷𝐷 = 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . 

3.2.3 Flowchart of the Monte Carlo Pseudo-Sequential solution method (chronological 
phase) 

The flowchart presented below summarizes the chronological phase of the Monte Carlo Pseudo-
Sequential solution method. 

 
Figure 3.3 – Monte Carlo Pseudo-Sequential (chronological phase) 

3.3 Monte Carlo Pseudo-Interval 

As could be seen in the previous sections of this document, the Monte Carlo Pseudo-Sequential 
scheme identifies system failure states in a non-sequential way, but evaluates each identified 
state chronologically, and can effectively be applied, for example, to estimate frequency & 
duration reliability indices such as LOLF and LOLD. However, if there are batteries or other small 
storage devices in the system, their stored energy could avoid or reduce the unserved energy 
during failures. 

In this case, the representation of batteries required a methodological extension to our original 
Pseudo-Sequential MCS. The reason is that batteries have a fast dynamic response that allows 
them to be redispatched, but being limited by the storage capacity (in addition to the installed 
capacity). Therefore, it becomes necessary to optimize the use of their stored energy along the 
duration of the system component failures. The extended methodology, known as Pseudo-
Interval MSC, optimizes the storage operation along the entire duration of the failure state 
(“perfect forecast”). This allows a more realistic representation of the actions that operators 
could take in terms of battery redispatching in those moments. 

As previously described, the conventional pseudo-sequential simulation, in which the adequacy 
of the system states is simulated step by step, does not allow representing the real behavior of 
the system operation when there are batteries or other small storage devices, because in real life, 
relying on these devices, the operator can use its knowledge of expected system behavior to more 
intelligently dispatch batteries throughout the duration of a component failure. 

In order to have this more realistic modeling, the pseudo-interval methodology adds an extra 
phase to the pseudo-sequential simulation that solves an hourly optimal dispatch problem for all 
the failure state duration, that is, for the period between the failure start, previously identified by 
the backward simulation, and the failure end, identified by the forward simulation. In this phase, 
the battery is no longer represented as a fixed injection defined by the SDDP hourly simulation, 
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and has its physical characteristics, such as the energy storage balance, represented in more 
detail. 

1. Repeat from 𝑡𝑡 = 1 to 𝑡𝑡 = 𝐷𝐷, corresponding to the first and last stages of the failure state, 
identified respectively in the backward and forward phases: 

a. Restore the states sampled for the components, during the backward and forward 
simulations, at time 𝑡𝑡. That is, if 𝑡𝑡 corresponds to an instant analyzed during the 
backward phase, the states of the components are restored to that instant 
analyzed during the backward simulation; if 𝑡𝑡 corresponds to an instant analyzed 
during the forward phase, the states of the components are restored to that 
instant analyzed during the forward simulation. 

b. Determine the hour ℎ2 associated to instant 𝑡𝑡, and obtain the corresponding block 
𝑏𝑏2; 

c. The variables of the system components that depend on the hour, or on the block, 
are updated in a similar way to what we have already presented for the backward 
and forward simulations; 

d. Add to the problem the variables and constraints that define the system adequacy 
for instant 𝑡𝑡; 

i. The main differences in the constraints and variables added to the system 
adequacy problem at this stage, in relation to the previous analyzes, refer 
to the battery modeling. At this stage, the batteries are no longer modeled 
as fixed injections, but through the variables and constraints that 
represent their operational behavior in more detail: 

1. Battery power production: 

                                                           𝑔𝑔(𝑖𝑖, 𝑡𝑡) = 𝑔𝑔(𝑖𝑖, 𝑡𝑡)+ − 𝑔𝑔(𝑖𝑖, 𝑡𝑡)− (35) 

Where 𝑔𝑔(𝑖𝑖, 𝑡𝑡)+indicates battery generation (discharge) and 𝑔𝑔(𝑖𝑖, 𝑡𝑡)− 
indicates battery consumption (charge); 

2. Maximum capacity: 

                                                          𝑔𝑔(𝑖𝑖, 𝑡𝑡) ≤ 𝐶𝐶(𝑖𝑖) (36) 

Where 𝐶𝐶(𝑖𝑖) is the nominal capacity of battery 𝑖𝑖; 

3. Power balance: 

                                                           𝑒𝑒(𝑖𝑖, 𝑡𝑡 + 1) = 𝑒𝑒(𝑖𝑖, 𝑡𝑡) −
𝑔𝑔(𝑖𝑖, 𝑡𝑡)
𝑎𝑎(𝑖𝑖)

+

+ 𝑏𝑏(𝑖𝑖)𝑔𝑔(𝑖𝑖, 𝑡𝑡)− (37) 

Where 𝑒𝑒(𝑖𝑖, 𝑡𝑡) is the energy stored in battery 𝑖𝑖 at instant 𝑡𝑡, 𝑎𝑎(𝑖𝑖) is the 
discharge efficiency and 𝑏𝑏(𝑖𝑖) is the charge efficiency; 

4. Stored energy capacity: 

                                                          𝑒𝑒(𝑖𝑖, 𝑡𝑡) ≤ 𝐸𝐸(𝑖𝑖) (38) 

Where 𝐸𝐸(𝑖𝑖) is the maximum energy storage of battery i; 

5. Up and down ramping constraints: 

                                                         𝑒𝑒(𝑖𝑖, 𝑡𝑡 + 1) − 𝑒𝑒(𝑖𝑖, 𝑡𝑡)  ≤ 𝑅𝑅𝑐𝑐(𝑖𝑖) (39) 
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                                                          𝑒𝑒(𝑖𝑖, 𝑡𝑡) − 𝑒𝑒(𝑖𝑖, 𝑡𝑡 + 1)  ≤ 𝑅𝑅𝑑𝑑(𝑖𝑖) (40) 

Where 𝑅𝑅𝑐𝑐(𝑖𝑖) is the charge ramp and 𝑅𝑅𝑑𝑑(𝑖𝑖) is the discharge ramp of battery 
i. 

The coupled adequacy problem for the entire failure horizon is then solved, and afterwards we 
verify if the failure state along the entire duration was eliminated by the battery redispatch. If yes, 
the reliability statistics are updated as a “success state”. Otherwise, we update the load 
curtailment statistics and other supply reliability indices related to failure states. 

3.3.1 Flowchart of the Monte Carlo Pseudo-Interval solution method (operation phase) 

The flowchart presented below summarizes the operation phase of the Monte Carlo Pseudo-
Interval solution method. 

 
Figure 3.4 – Monte Carlo Pseudo-Interval (operation phase) 
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